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Fig. 1. While XR devices increasingly support dynamic hand interactions, the corresponding speech-based interfaces remain 
limited (a). While adding speech commands enhances interface capability (b), they lack scalability for diverse hand interactions. 
We introduce the approach of using a virtual proxy hand that enables users to describe their desired interactions, which 
the system translates into executable hand movements (c). This approach supports various interactions, such as UI control, 
object manipulation, and interactions that emerge from physics, collisions, or hand rotation and movement (d). 

Hand interactions are increasingly used as the primary input modality in immersive environments, but they are not always 
feasible due to situational impairments, motor limitations, and environmental constraints. Speech interfaces have been 
explored as an alternative to hand input in research and commercial solutions, but are limited to initiating basic hand 
gestures and system controls. We introduce HandProxy, a system that expands the affordances of speech interfaces to support 
expressive hand interactions. Instead of relying on predefined speech commands directly mapped to possible interactions, 
HandProxy enables users to control the movement of a virtual hand as an interaction proxy, allowing them to describe the 
intended interactions naturally while the system translates speech into a sequence of hand controls for real-time execution. 
A user study with 20 participants demonstrated that HandProxy effectively enabled diverse hand interactions in virtual 
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environments, achieving a 100% task completion rate with an average of 1.09 attempts per speech command and 91.8% 
command execution accuracy, while supporting flexible, natural speech input with varying levels of control and granularity. 

CCS Concepts: • Human-centered computing → Interactive systems and tools. 

Additional Key Words and Phrases: Hand interaction, speech interface, interaction proxy, virtual environment 

1 Introduction 
Hand tracking is increasingly used as the primary input modality on extended reality (XR) devices to interact 
with the virtual environment [3, 4, 6]. As a result, many applications are built specifically for hand interactions, 
including games, productivity apps, and 2D/3D user interfaces (UI). For example, users can pinch and drag the 
corner of a window to resize UI windows on Meta Quest, or grab and move a virtual object to place it in an 
desired position in mixed reality on Apple Vision Pro. Games such as Waltz of the Wizard1 rely on various hand 
interactions, including grabbing and moving game objects, punching skulls, knocking doors, shaking hands, and 
tilting cups to pour water. These examples highlight the expressiveness and complexity of hand interactions 
beyond traditional input modalities, and demonstrate diverse interaction possibilities that could only be achieved 
with hands in the virtual environments. 

However, users may not always be able to perform the expected hand interactions, making it challenging 
or even impossible to effectively interact with the virtual environments. This could be caused by situational 
impairments [84], e.g., when users’ hands are occupied with other physical tasks, they may not be able to 
manipulate virtual objects and interfaces. Environment constraints could also cause challenges, e.g., users may 
not be able to move freely in a confined physical space [46], and virtual objects could be out of physical reach 
in an enlarged virtual space [82]. Additionally, predefined hand interactions may be inaccessible to users with 
upper body limitations [54, 88]. These challenges indicate the need for alternative ways of interacting with 
virtual environments, specifically those that can reproduce or achieve similar interaction experiences and the 
expressiveness as the original hand interactions. 

Among the various alternatives and enhancements to hand input, speech has emerged as an ideal modality due 
to its intuitiveness and high degree of freedom. Prior research has explored its uses in object manipulation [79], 
navigation [38], and environment creation [9]. Additionally, speech has been adopted as an assistive input modality 
in many mainstream XR devices. For example, Apple Vision Pro provides voice control [7] as an alternative to 
hand input, which can initiate simple interactions, including tap, swipe, and drag and drop on 2D interfaces. Users 
can also issue high-level commands, such as “turn up the volume”, instead of doing it step-by-step. However, these 
speech interfaces typically support a limited set of hand interactions and require users to use a rigid, predefined 
command format to trigger actions. While this approach works for basic system-level interactions, it falls short 
in supporting the complex and diverse interactions a hand can do in virtual environments. This limitation is 
particularly relevant to interactions triggered by hand gestures or movements, such as 3D object manipulation 
(e.g., pinch, punch, squeeze) and physics-based interactions (e.g., slice a fruit in half with a cutting gesture). Thus, 
we seek to address the question: “How can we expand the affordances of speech interfaces to support expressive and 
diverse interactions, especially those that can be achieved via hand interactions in virtual environments?” 
Instead of merely designing more speech commands, this work proposes an alternative approach: enabling 

users to use natural language to control a virtual hand, where it can then simulate corresponding 
movements and perform necessary interactions on the user’s behalf. This approach is motivated by the 
observation that many interactions result from a sequence of hand movements, where each step contributes 
specific meaning to the overall interaction. For example, when pulling a lever, visual effects are triggered as the 
hand grabs the handle, the corresponding magnitude changes as the hand moves the lever, and the effect finally 
takes place when the hand releases it. Furthermore, many interactions are not explicitly defined but emerge 

1https://www.aldin.io/ 
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Fig. 2. Example of how HandProxy would process the user’s speech commands. The user continuously talks to the system, 
where the system concurrently recognizes the commands, decomposes them into steps, parses them into executable hand 
control instructions, and calculates the sequence of hand movements to control the virtual hand performing the desired 
interaction. The processed instructions are added to a queue for continuous hand control. HandProxy utilizes both rule-based 
methods to detect high-priority commands (e.g., stop, undo) and large language model to interpret natural language input. 
Whenever a high-priority command is detected (e.g., (5) in the plot), HandProxy will terminate the current execution and 
perform the high-priority commands. 

as a result of other factors, such as collision and physics. For example, an application may not have a specific 
“clean the table” interaction defined, but the user can achieve this by sweeping the virtual hand across the table, 
pushing objects away through simulated collision. Therefore, it is impossible to simply create predefined speech 
commands for all possible interactions, as interactions themselves could be loosely defined, i.e., they are either 
context-dependent or dynamically generated. These considerations motivate our design choice of preserving the 
virtual hand within the environment. This allows users to control and reproduce actions as if real hand input is 
used, enabling them to perform interactions that mirror the capabilities of a physical hand. 
To achieve this, we introduce HandProxy, a system that enables users to control a virtual hand through 

continuous, natural speech input. HandProxy is inspired by the concept of interaction proxy [92], where a 
virtual hand is used as the proxy layer between the speech interface and the immersive environment, as shown 
in Figure 1. We explored existing hand interactions in prior work, commercial devices, and VR applications 
[9, 35, 53], and synthesized a list of hand control primitives that could be used for decomposing and reproducing 
common hand interactions. Within the comprehensive space of possible hand interactions, this work starts by 
focusing on the fundamental, while critical, use case — one-handed interactions. Specifically, we investigate how 
one-handed manipulative interactions can be initiated through the speech interface and categorize them into 
four key primitives: gesture, target, spatial, and temporal control. These primitives are used as the foundation 
to reproduce various interaction, including both detailed controls (e.g., do a pinch gesture, grab the apple) or 
high-level interactions (e.g., maximize the volume). As shown in Figure 2, the system captures users’ natural 
speech, parses it into a list of executable commands with a Large Language Model (LLM), calculates the desired 
hand skeleton data, and renders it in the target system and application. HandProxy is optimized for real-time 
interaction, and we demonstrated that it can be used in a variety of interaction scenarios. 
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To understand how well HandProxy could perform hand manipulations from a diverse range of natural 
language commands, and to gain insights from users’ experiences of controlling a virtual hand through speech, 
we conducted a user study with 20 participants. Our study shows that HandProxy enabled users to complete a 
variety of hand interactions in the virtual environment, including different types of interactions such as mid-air 
gestures (e.g., swipe left), direct object manipulation (e.g., twist the knob), high-level interaction tasks (e.g., 
increase the volume), and with varying levels of complexity (e.g., one-step to multi-step interactions). Participants 
reached a 100% task completion rate, and took an average of 1.09 attempts for their speech commands to be 
correctly executed by the system (with a command execution accuracy of 91.8%). HandProxy was able to handle 
diverse variations of participants’ commands for the same tasks, such as using descriptive commands (e.g., “touch 
your index finger and thumb” to pinch, “grab the red fruit” to grab an apple), varying levels of details (e.g., to 
increase the volume, either grab the slider and move up, or directly say “maximize the volume”), or sentence 
structures. Furthermore, participants reported the system to be intuitive, effective, and require minimal learning 
to use, and pointed out possible improvements including more detailed feedback for enhanced disambiguation 
and discoverability, greater responsiveness, and supporting additional hand controls. 
The specific contributions of our work therefore include: 

(1) A set of primitives to categorize common hand interactions in the virtual environment, allowing hand 
interactions to be decomposed and reproduced. 

(2) A real-time system, HandProxy, that enables users to issue natural speech commands to control a virtual 
hand to simulate and perform hand-based interactions in the virtual environment. 

(3) An investigation into the effectiveness and user experience of using speech to control hand movement for 
various interaction tasks in the virtual environment. 

2 Related Work 
Our work is based on the literature of hand gesture input in XR, alternative input modalities for hand interactions, 
speech interfaces, and interaction proxies. 

2.1 Enhancements and Alternatives for Hand Interactions 
Hand interactions have been widely used as an input method for interacting with virtual environments as it 
is intuitive, expressive, and preferred by users [16, 75]. These advantages have made them a core interaction 
technique across various devices and application domains, including object manipulation [34, 62, 65, 66], virtual 
collaboration [70], creativity support [14, 44, 80], gaming [1], and object retrieval [60]. 
Despite these advantages, hand interactions also come with certain limitations. Situational impairments [84] 

such as occupied hands in AR, physical disabilities [21, 86, 88] such as upper body limitations, fatigue caused by 
long-term use of mid-air gestures [37, 43], or environment constraints such as the confined physical space [46] 
or out-of-reach virtual objects [82] could limit users’ abilities to perform hand input. Additionally, users may 
prefer different gesture [61, 63, 85], making the standardized gesture input less desirable in certain situations. 
To address these challenges, researchers have explored various enhancements and alternative interaction 

techniques. Some approaches expand hand input capabilities, such as extending the virtual hand for reaching 
distant objects [64, 82], using multiple virtual hand copies for easier object selection [68], and exploring customized 
gesture sets for users with motor impairments [73]. Others focus on alternative input modalities, including 
sensor-based modalities [87, 88], speech-based commands [51], and multi-modal interaction techniques, such 
as gaze + voice [31], hand + gaze [78], and hand + speech [83]. However, they are either designed to address a 
limited scope of specific scenarios (e.g., basic object manipulation, locomotion) or may require complex input 
setups, which are less practical to be deployed on existing devices for a broad range of interaction scenarios. 

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 3, Article 107. Publication date: September 2025. 



HandProxy: Expanding the Affordances of Speech Interfaces in Immersive Environments with a Virtual Proxy Hand • 107:5 

Building on insights from prior research, HandProxy uses speech as an alternative modality. This choice 
is motivated by the fact that speech is widely accessible across various devices and is already integrated as a 
built-in control mechanism in many commercial systems [7, 8]. We explore how speech can be used to initiate an 
expressive and diverse range of interactions that usually require hand input. Rather than simply substituting 
individual gestures for speech commands, our work expands the capabilities of the existing speech interface 
through a proxy hand, enabling users to perform hand-based tasks through flexible and intuitive spoken input. 

2.2 Speech Interfaces in Immersive Environments 
Speech has been widely adopted as a control mechanism across various scenarios. For example, users can issue 
supported voice commands to interact with mobile devices [12, 77] or desktop user interfaces [13, 41]. In robotics, 
speech has also been employed to control robot actions [40, 72]. More recently, the integration of speech interfaces 
with large language models (LLMs) has expanded these capabilities [11, 24, 28, 59, 67, 76, 94], enabling functions 
such as motion planning, task decomposition, and flexible natural language input. 
In immersive environments, speech interfaces have been shown to be particularly intuitive, expressive, and 

natural due to their high degree of freedom [15, 35, 51]. As a result, it has emerged as a promising input modality 
for interactions in virtual environments. Prior work has explored speech-based interactions for a range of tasks, 
including virtual objects manipulation [15, 18, 53, 69], locomotion [38], and scene creation [9, 91], using verbal or 
non-verbal commands such as breathing or sound actions [2, 71, 95]. Commercial XR devices have also integrated 
speech as a built-in assistive input modality. For example, Apple Vision Pro [7], Meta Quest [5], and Microsoft 
HoloLens [8] allow users to issue system commands (e.g., volume adjustment, power control) or perform simple 
hand gestures (e.g., tap, swipe, drag, and drop) using voice input. While these approaches demonstrate the 
versatility of speech interfaces, they require users to follow rigid command structures, and the interactions 
supported are limited to basic hand gestures and system functions. 
Recently, integrating large language models (LLMs) into speech interfaces has opened up diverse interaction 

possibilities, allowing users to directly create, manipulate, query, and engage with their environments through 
flexible speech input [9, 25, 79]. Building upon these prior works, we specifically explore ways to expand 
the affordance of speech interfaces through a generalizable approach, so that it can enable more interaction 
possibilities, while requiring minimal direct modification of individual applications to support it. To achieve this, 
we introduce a virtual proxy hand in the pipeline. By describing the movement of a proxy virtual hand in flexible 
speech input, we seek to enable expressive interactions in virtual environments, especially those that hands 
or only hands can do. Additionally, to design an effective speech-based system, we built upon prior work on 
speech interfaces [35, 56, 59], user expectations for AI-driven agents in VR [9], and contextual considerations in 
speech systems [90]. These insights inspire the design choices of HandProxy to incorporate embodied knowledge, 
contextual understanding, conversational memory, interaction state control, and common knowledge integration 
to enhance the system’s ability to interpret and execute user commands effectively. Combining these design 
choices, our system can effectively support users to describe their interaction intentions, and the proxy hand can 
then perform the necessary interactions on the user’s behalf. 

2.3 Interaction Proxies 
Interaction proxies are the extra layer inserted between the original and the manifest interface in order to add or 
modify interactions without changing the app’s source code [92]. Their ability to introduce new functionality 
with minimal modifications makes them particularly valuable for tasks such as input remapping [48, 50, 92, 93] 
and UI automation [47]. This concept has also been applied to immersive environments. For example, researchers 
have created tangible proxies that map physical input with digital interactions [17, 23, 27, 36, 42]. Other work 
explores remapping of complex 3D input motions in VR to a more accessible ranges of motion or simpler input 
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Fig. 3. Examples of how hand interactions can be decomposed into one or multiple combinations of hand control primitives. 

devices [81]. Some work specifically explored the remapping of hand interactions through the proxied interface 
in virtual environments, such as remapping VR hand interactions to mobile devices [46] or finger movement [74] 
to facilitate interactions in constrained spaces. Additionally, McGlashan et al. [51] introduced proxy agents as an 
interaction metaphor in VR, allowing users to issue commands to virtual agents that execute tasks on their behalf. 
Inspired by these ideas, HandProxy explores how expressive hand interactions can be effectively translated 

into speech commands. Rather than relying on a rigid set of predefined voice commands for each interaction, 
HandProxy allows users to control a virtual hand as a proxy, enabling it to perform actions just as a real hand 
would. This approach ensures that users can issue commands in a natural and intuitive way, while the virtual hand 
continues to interact with applications as expected. Additionally, this method reduces the need for system-specific 
modifications to support the mapping and functionality of the speech interface, making this approach compatible 
and generalizable across different applications that accept hand input. 

3 Primitives of Hand Interaction 
To effectively perform interactions using the virtual proxy hand, it is essential to define a control framework that 
can reproduce a wide range of hand movements. Anatomically, the human hand has 27 degrees of freedom (DoF), 
covering finger extension, flexion, abduction, adduction, wrist rotation and translation [10]. Given this complexity, 
directly replicating all possible hand movements would be impractical for virtual interactions, as each of the 27 
DoF needs to be mapped to an input for control. Therefore, in this section, we introduce a simplified control 
framework designed to balance usability and expressiveness, and ensure that commonly used hand interactions 
in virtual environments can be effectively reproduced while maintaining intuitive control. 
Our framework is inspired by the concept of hierarchical gestures [26, 49], where complex hand interactions 

can be formed by strategically combining multiple primitive gestures. However, in this work, we take a slightly 
different approach — instead of building up interactions from simpler gestures, we explore how commonly used 
hand interactions can be decomposed into a small set of shared fundamental control primitives. The goal of this 
decomposition is to create a compact yet expressive control framework that simplifies the reconstruction of hand 
interactions while still accommodating a wide range of interaction possibilities. Additionally, this approach could 
align more naturally with speech input, which is inherently structured as a combination of smaller linguistic 
units (i.e., words). For example, given the command “pinch up”, it can naturally be decomposed into a gesture of 
pinch and a movement of up, matching the primitive hand controls. With these characteristics, the framework 
simplifies the integration of hand control with speech input while also making interactions intuitive for users. 
To develop this framework, we reference prior work on hand gesture definitions [45], mid-air gestures 

[39, 61, 63], gesture design considerations [85], as well as gesture vocabularies in XR device control [3, 4, 6] and 
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XR applications [1]. In this work, we focus on the fundamental and critical use case — one-handed manipulative 
interaction, and identified a set of fundamental hand control “building blocks” that served as the core components 
for reproducing diverse interactions, including gesture control, target control, spatial control, and temporal control, 
which are discussed below. 

Gesture Control: Gesture control defines the fundamental static or dynamic gesture required to initiate a 
specific interaction, independent of spatial or temporal constraints. For example, to twist an object clockwise, 
the hand must first assume a grab gesture, then perform an additional rotation to complete the action. These 
gesture units build the foundation of a hand interaction. In this work, we demonstrate a core set of base gestures 
commonly used in virtual environment interactions, such as grab, pinch, and cut. For further technical details on 
extending the gesture set, please refer to section 4. 
Target Control: A gesture can be either object-independent or object-dependent. For example, a user may 

perform a mid-air pinch gesture without interacting with any object (object-independent), or they may execute 
the same gesture on the corner of a virtual interface to manipulate it (object-dependent). The goal of target 
control is to determine whether a gesture depends on an object, identify the specific target the user is referring 
to, and adjust the hand movement accordingly to ensure proper interaction. For example, given the command 
“grab the rightmost watermelon”, the target control should recognize this as an object-dependent action, resolve 
“the rightmost watermelon” as a specific object, and adjust the virtual hand’s movement path to ensure it reaches 
and successfully grabs the correct target. 

Spatial Control: Spatial control determines the movement and rotation of the hand in addition to the previous 
controls. This includes the movement of the hand in the 3D virtual environment and the rotation of the hand, 
including pan left/right, roll left/right, and tilt forward/backward. Beyond basic gesture and target control, spatial 
control modifies the movement path and behavior of the hand to enable more complex interactions. This allows 
users to perform tasks such as placing an object at a specific location, grabbing and moving a virtual slider, 
twisting a knob, or rotating the hand to inspect an item from different angles. 

Temporal Control: Temporal control acts as a playback control, regulating the timing and execution of hand 
interactions. This includes the ability to pause, resume, accelerate, decelerate an ongoing interaction, as well as 
undo, redo, or repeat a previous interaction. These controls enable interactions that depend on timing and states. 
For example, a user may pull the lever and stop pulling when they heard a audio cue to stop, or resize the window 
by pinching and moving to the right until satisfied. Users can also correct an undesired interaction through undo, 
or simplify repetitive interactions through repeating a specific hand state (e.g., do it again / 10 times). 

Given these control primitives, a hand interaction can be decomposed into one or more combinations of these 
foundational elements. As shown in Figure 3, “pull up” can be broken down into a grab gesture (Gesture Control) 
and a upward movement (Spatial Control). High-level commands that require multiple steps can be decomposed 
into multiple combinations of these primitives. For instance, “put the apple into the basket” involves three steps – 
grab the apple, move to the basket, and release the hand. Through this structured decomposition, the system can 
effectively interpret and reproduce a wide array of hand interactions, accommodating both simple commands 
and more complex interactions. This framework guides our system design as detailed in section 4, ensuring that 
our approach remains flexible and intuitive to various interaction needs. 

4 HandProxy: A Speech System for Virtual Environment Interaction Using a Proxy Hand 
HandProxy is a system that converts a user’s live speech commands into dynamic virtual hand movements, 
allowing the proxy hand to interact with the virtual environment on the user’s behalf. Overall, the HandProxy 
system has the following key capabilities: 

(1) Flexible natural speech commands: HandProxy allows users to describe interactions in their own 
words without rigid formats. It interprets input, decomposes complex commands into executable steps, and 

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 3, Article 107. Publication date: September 2025. 



107:8 • Chen Liang, Yuxuan Liu, Martez Mott, and Anhong Guo 

Fig. 4. An overview of the HandProxy system structure. Given the user input, the speech understanding module recognizes 
the speech into commands, and parses the commands into system-interpretable instructions. The instructions are then sent 
to the hand control module, which generates the corresponding sequence of hand pose to control the movement of the virtual 
hand. Visualization and feedback module generates appropriate visual feedback for disambiguation and better transparency. 

prompts for clarification when needed. Users can issue commands at different levels of detail—from precise 
hand movements (e.g., “pinch” or “grab the box”) to high-level goals (e.g., “increase the brightness” when a 
brightness knob is present), which brings additional flexibility for user input. 

(2) Context-aware command processing: By leveraging environment metadata and real-time object p -o
sitions, HandProxy interprets contextual references, allowing users to specify targets based on relative 
positions (e.g., “grab the watermelon in the middle”) or object attributes (e.g., “pick up the pink fruit”). It 
also maintains a history of interactions, enabling users to reference past actions (e.g., “do it again”) or use 
undo/redo functions to restore a hand state, to support intuitive and efficient interaction. 

(3) Real-time streaming input and execution: HandProxy takes speech input continuously, allowing users 
to speak naturally while the system interprets and executes commands in parallel for a seamless interaction 
experience. High priority commands (e.g., “stop”, “undo”) are processed instantly via rule-based methods, 
while LLMs handle complex instructions. System components run in parallel to minimize delays. 

(4) Feedback for disambiguation and system transparency: To enhance clarity and system transparency, 
HandProxy provides visual feedback overlays showing recognized commands, expected hand movements, 
and prompts for retry when needed. When multiple objects match an object description in the command, it 
shows disambiguation labels to clarify user intent. 

In the following sections, we begin with an overview of the system design elements, followed by technical 
details of each components, and conclude with a summary of the design iterations conducted during development, 
which offers further rationale for our design choices. 

4.1 Design Elements 
As illustrated in Figure 4, HandProxy consists of three major components: speech understanding, hand control, 
and visualization & feedback. The speech understanding module continuously listens to and processes user input 
in a streaming fashion in real-time using Google Speech-to-text API [33]. It segments long speech inputs into 
individual commands based on punctuation, and adds them to the command queue. Using GPT-4o [58], the 
system then interprets each command and decomposes it into a sequence of instructions in the json format. Once 
instructions are available, the hand control module uses the hand pose sequences that was either retrieved from 
FPHAB [30] dataset or recorded using LeapMotion and modifies the skeleton data to accommodate movement, 
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rotation, and hand-object interaction. The playback of the hand data is controlled by the hand state manager to 
support interaction timing control, and is streamed to the target virtual environment for virtual hand control, 
along with additional visualizations and feedback to be overlaid on top of the user’s view. The system components 
run in parallel to increase the efficiency and avoid blocking the hand movement and impacting user experience. 

The HandProxy system is implemented in Python, with its output streamed to a Unity application via the TCP 
connection. The Unity application renders a sample 3D virtual environment that contains interactable objects 
and a virtual hand, simulating an immersive application that supports hand gesture input. It overlays visual 
feedback specific to HandProxy on top of the immersive environment, as shown in Figure 5. For demonstration 
and prototyping purposes, the Unity app runs on a laptop, but can be deployed to other supported platforms (e.g., 
Android on Meta Quest). Demonstrations of the interaction experience on desktop and XR headset setups are 
provided in the supplementary video. 

4.2 Speech Understanding 
The speech understanding module recognizes and interprets the user’s command. It determines whether the 
speech command is an interaction command or a random speech, checks if it is ambiguous or interpretable, and 
decomposes it into structured, system-interpretable instructions for the hand control module to execute. 
For speech recognition, HandProxy uses the Google Speech-to-Text API, which is configured to return inter-

mediate results for real-time streaming recognition. The speech input is segmented into individual sentences, 
determined by terminal punctuation on the final results returned from the API. Each sentence is then treated as a 
command and is added to the command queue for interpretation. 

For command interpretation, HandProxy uses a multi-level approach for command processing. Similar to the 
reactive and deliberative layers in robotics [57], the system uses keyword matching and directly responds to high-
priority commands, with LLM-based processing for more complex inputs. Specifically, as soon as intermediate 
results are received from the speech recognition service, HandProxy checks predefined keywords and synonyms 
related to temporal controls as discussed in section 3. These commands — such as “stop,” “hold,” or “undo” — 
are time-sensitive and need to be executed with minimal delay. If a matching keyword is detected, the system 
triggers the corresponding temporal control immediately. Otherwise, the system retrieves the earliest available 
command from the command queue and processes it using GPT-4o. The model is guided by a structured system 
prompt and is provided with a list of supported control categories from section 3, which is listed below: 

Your objective is to break down a user command into actionable control components that the system can execute. 
Once you receive the command, follow these steps meticulously: 
#### **Step 1: Command Fixing** 
1. Input command is converted from speech, so minor errors may occur. If you notice any, please correct them 
and replace the original command with the fixed version. 
#### **Step 2: Components Matching** 
1. Carefully read through the entire command. 
2. Imagine you are a person with only your right hand available (currently empty), standing in a wide space, 
surrounded by the objects and environment described in the command. 
3. With point 2 in mind, align each command part (and necessary actions for execution, e.g., grabbing an 
object before moving it) with a corresponding control component listed below. Users may say or describe the 
interaction in various ways, the system should match the similar concept together. For example, "chop" and 
"cut" should both be matched to "cut", etc. 
4. If no components can be matched, proceed DIRECTLY to Step 4.2, skip intermediate steps. 
#### **Step 3: Ensuring Correct Order** 
1. Components should follow the user’s expected execution sequence. 
#### **Step 4: Structuring Output** 
1. Once the components are matched, fill in all fields within each component. ENSURE ALL FIELD VALUES ARE 
SELECTED FROM THE PREDEFINED OPTIONS PROVIDED BELOW. 
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2. Format each component as a JSON object as defined below, then output them sequentially in an array. If no 
components are matched, set the value of components to an empty array. 

[. . . # a list of available controls and parameters for each component are appended after the prompt] 

The LLM is used to (i) correct potential speech recognition errors (e.g., power bottom → power button), as 
used in other works like [89], (ii) decompose high-level commands, if any, into executable steps (e.g., put the 
cube into the basket → grab the cube, move to the basket, and release), and (iii) parse individual steps as a list 
of instructions as json. Also, since people tend to use a surprisingly great variety of words to refer to the same 
thing [29], the system prompt instructs the model to generalize beyond exact words provided in the supported 
instructions to accommodate diverse ways users may phrase their commands. For example, commands with 
similar intent are mapped to the same control action (e.g., “pinch” = “tap index and thumb,” “pink circular fruit” 
= “peach”). If a given input is not relevant — meaning it does not appear to be an interaction command — the 
model is instructed to ignore it and return an empty list instead of attempting to interpret unrelated speech. 
Additionally, user commands are saved within a command list, allowing the system to refer back to previous 
inputs when necessary (e.g., resolving references to earlier commands). 
This approach ensures that the LLM interprets user commands and maps them to the appropriate hand 

interactions, which includes: 

• Gesture Control: [“pinch”, “point”, “push”, “grab”, “swipe”, “punch”, “squeeze”, “cut”, 
“thumb_up”, “thumb_down”, “open_hand” (i.e., release)] 

• Target Control: (i) A list of interactable object names in the virtual environment, their current positions, 
and a list of descriptive tags for each object, (ii) supported relative constraints to identify objects: [“below”, 
“above”, “to the left of”, “to the right of”, “in front of”, “behind”, “closest”, 
“farthest”, “first”, “last”, “on the left”, “in the middle”, “on the right”] 

• Spatial Control: (i) translational control: [“up”, “down”, “left”, “right”, “forward”, “backward”], 
(ii) positional control: [“on top of”, “under”, “in front of”, “behind”, “to the left of”, “to 
the right of”], (iii) rotational control: [“pan left”, “pan right”, “roll left”, “roll right”, 
“tilt up”, “tilt down”] 

• Temporal Control: [“stop”, “continue”, “faster”, “slower”, “undo_step”, “redo_step”, 
“hold”] 

At the end, the speech understanding module outputs a json object following this standard format. For example, 
given the command “pinch the cube,” the system generates the following instruction: 

[{“component_type”: “gesture”, “value”: {“gesture_type”: “pinch”, “object”: “cube”, “is_ambiguous”: False}}] 

Here, the system identifies a gesture control action, which specifies a pinch gesture on the cube object. If only 
one cube exists in the environment, the is_ambiguous variable is set to False. However, if multiple cubes are 
detected, it is set to True, triggering a disambiguation mechanism and corresponding visual feedback in other 
modules to prompt the user for clarification. 

For more complex commands, the LLM references both the list of supported actions and its general knowledge 
to determine the best way to combine supported hand controls to finish the user’s request. For instance, given 
the command “peach into the basket,” the system generates multiple sequential steps: 

[{“component_type”: “gesture”, “value”: {“gesture_type”: “grab”, “object”: “peach”, “is_ambiguous”: False}}, 
{“component_type”: “movement”, “value”: {“movement_type”: “translational”, “object”: “basket”, “is_ambiguous”: 
False, “position”: “on top of”}}, {“component_type”: “gesture”, “value”: “release”}] 

By dynamically generating one or more executable steps, HandProxy lets users issue both low-level direct 
commands and high-level intent-based commands, which provides an adaptive and natural interaction experience. 
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4.3 Hand Control 
The hand control module executes instructions from the json to generate a sequence of hand pose data to control 
the virtual hand. It maintains a hand state manager, which tracks key hand properties such as the current hand 
pose, wrist position, playback status (e.g., whether an action is in progress), and the sequence of upcoming hand 
poses. When a new instruction arrives, the hand control module activates the relevant control sub-modules 
discussed in section 3 to update the hand pose data. Next, we describe each control module in detail. 

4.3.1 Gesture Control. The gesture control module generates a sequence of hand pose data to represent the 
required gesture. These poses are retrieved from the FPHAB [30] dataset or captured using LeapMotion, but 
is extensible to gesture datasets that include the 2.5D coordinates (x_ratio, y_ratio, z_depth) of 21 hand 
joints. The gestures supported in the current system includes grab, pinch, point, push, swipe, cut, punch, squeeze, 
thumb up/down, and open hand (release). 
To enrich data with additional gesture information, each gesture is manually annotated with details about 

the gesture’s object dependency and different gesture stages [52] that could benefit the gesture control. The full 
metadata format can be found in Appendix A, and some key attributes include: 

(1) Is static: Specifies whether the gesture is static or dynamic. 
(2) Interacting frame: Identifies the frame at which the hand fully interacts with an object (if applicable). 
(3) Interacting joint: Specifies the joint primarily involved in the interaction (e.g., the index fingertip for 

a pointing gesture). If unspecified, the wrist is used by default. This information helps hand movement 
calculations during object interactions to better match the expected hand behavior. 

(4) Segments: Defines the start and end frames for different gesture phases, including preparation, stroke, and 
retraction. This segmentation supports additional features such as gesture holding. 

Combining all the data together, when given a gesture command, the module loads the sequence of hand pose 
data from the gesture database. Downstream modules can use the pose data at each frame as an 21 × 3 matrix, 
modify it, and send it to the virtual environment. 

4.3.2 Target Control. The target control module handles object-dependent hand interactions by identifying and 
aligning the virtual hand with the intended target. It first resolves the target object using positional constraints, 
such as “below,” “above,” “to the left of,” “to the right of,” “in front of,” “behind,” “closest,” “farthest,” “first,” “last,” 
“on the left,” “in the middle,” and “on the right.” These constraints are resolved by retrieving the current positions 
of all virtual objects through a query to Unity application and calculating their relative spatial relationships. 
Once the target object has been determined, the module calculates a path to move the hand from its current 

position to the target object. It first determines the total distance to move, calculates the movement step size by 
dividing the total distance by the number of frames for this gesture, and cumulatively add step sizes to original 
hand pose data for all the following gesture frames. This calculation also accounts for the interacting joint (as 
discussed in Gesture Control) to ensure alignment. For example, if the command is to point at a button, the 
system uses the interacting joint defined in the gesture metadata to set the index fingertip to align with the center 
of the button when calculating the movement path. By dynamically modifying the original hand pose sequence, 
the target control module ensures that gestures interact with objects in the correct fashion. 

4.3.3 Spatial Control. The spatial control module manages the movement and rotation of the virtual hand. 
It supports translational movements in six directions: “up,” “down,” “left,” “right,” “forward,” and “backward.” 
Additionally, it enables rotational adjustments, including “pan left,” “pan right,” “roll left,” “roll right,” “tilt up,” 
and “tilt down.” Specifically, translational movements are applied by adding a speed vector to the hand pose 
data, while rotational adjustments are calculated by rotating the joint coordinates along the estimated hand axis 
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using the vector of middle metacarpophalangeal joint (MCP) to index MCP, middle MCP to wrist, and the vector 
perpendicular to these two vectors. 
Similar to target control, movement commands can also reference target objects along with relative position 

constraints such as “on top of,” “under,” “in front of,” “behind,” “to the left of,” and “to the right of.” In such 
cases, the system computes the movement path similarly to object interactions but applies an offset to reach the 
specified position relative to the target object. 

4.3.4 Temporal Control. Temporal control specifies the timing and state changes of hand interaction, including 
“stop”, “continue”, “faster”, “slower”, “undo_step”, “redo_step”, and “hold.” Hand pose data from earlier stages is 
sent to the hand state manager, which keeps a playback speed (frames per second, fps) and playback state (stop, 
play) that can be adjusted based on temporal control commands. For the hold command, specifically for holding 
a specific interacting gesture (e.g., as in grab and hold the cube), the temporal control adds a key frame at the 
interacting frame (as defined in gesture control) and pauses the playback at that frame to hold the gesture. 

Additionally, the hand state manager maintains a history of final hand poses after each command. This enables 
“undo” and “redo” functionality, allowing users to revert to previous hand states or redo an action if needed. If an 
error occurs, the system can quickly restore the last hand state, providing a flexible interaction experience. 
At the end, the hand control module outputs the hand pose for the current frame as a list of 63 numbers (21 

joints × (x, y, z)), and sends it to the Unity app to control the virtual hand. 

4.4 Visualization and Feedback 
To enhance system transparency and clarify potential ambiguities in user commands, HandProxy incorporates 
various visual feedback mechanisms that are overlaid on the user’s viewport. In the prototype Unity app, 
visualization is implemented as a canvas overlaid on the main camera view. Each visualization is triggered when 
it receives the command from the HandProxy. Figure 5 shows examples of each feedback type. To ensure users 
understand how their commands are processed, the system displays both the recognized (full input) and active 
(which part of the input is being executed) commands. If a command is irrelevant (e.g., not a valid hand interaction) 
or cannot be interpreted, the system highlights an error message in the recognized input and prompts the user to 
rephrase the command. For cases where the user refers to an ambiguous object (i.e., multiple similar objects exist 
in the environment), the system provides disambiguation hints by overlaying numbered labels on each possible 
target, allowing users to specify the object by its assigned number. To further increase transparency in hand 
movement execution, the system visualizes the movement path. As shown in Figure 5d, a sequence of arrows 
appears along the trajectory, indicating the direction in which the hand is moving. If the command involves 
multiple steps, the full movement sequence is previewed to give users an overview of how the hand will execute 
the task. These visualizations provide users with greater visibility of the system to bridge the gulf of evaluation, 
improving both command accuracy and interaction efficiency while reducing errors and misinterpretations. 

4.5 System Latency 
The system latency is composed of two main components: speech recognition and processing latency, and 
command processing latency. Speech recognition and processing latency measures the time from just before an 
audio chunk is sent via an API request, to when the recognized text is split into commands. Based on 100 requests, 
the average latency for this process was 0.18 seconds, with a standard deviation of 0.07s. The command processing 
time is the time it takes for the system to interpret the command and generate a sequence of corresponding hand 
pose keypoints. We measured such latency for both commands that matched high-priority keywords, and those 
processed by LLMs. Through a test of 100 commands that matched the high priority keywords, all commands 
were executed within 0.001 seconds. Through a test of 100 requests that included both simple (e.g., requires one 
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Fig. 5. Examples of system feedback: (a) an overlay streaming speech recognition results and currently executing command, 
(b) an error message indicating the command is ambiguous, prompting the user to try again, (c) a disambiguation overlay 
that labels ambiguous objects, where the user can clarify the desired one by saying its number, and (d) a preview of the hand 
movement path, shown as a list of arrows pointing towards the destination. 

step), complex (e.g., needs to be decomposed into multiple steps), and irrelevant commands (e.g., not a valid 
interaction instruction), the average response time was 1.39 seconds, with an standard deviation of 0.81s. 

4.6 Adapting to New Gestures and Environments 
HandProxy can be extended with additional gestures. It accepts hand pose data in the format of a sequence 
of 21 keypoint coordinates (x, y, z) and a gesture metadata in the format shown in Appendix A. The widely 
used 21-joint format enables data from various sources to be easily integrated, such as hand pose datasets [30], 
recorded data (e.g., from LeapMotion or MediaPipe), and hand pose generation models [22]. Given this, HandProxy 
automatically normalizes the data and adjusts the value based on the instruction. Existing built-in controls, such 
as target, spatial, and temporal controls and other gestures, are still compatible with the newly added gestures. 
To adapt to new environments, HandProxy requires the name and optionally descriptive tags of interactable 

objects, similar to the accessibility metadata required for interactive UI element on mobile [32] or web interfaces 
(e.g., DOM tree [55]). The GPT prompt is dynamically updated with the object information to process new 
commands. Note that due to limited direct access of the hand input on XR systems, in our current implementation, 
the virtual hand is added as an object within the application. However, we envision that with system-level support, 
HandProxy can directly control the virtual hand input of the operating system and retrieve interactable object 
information to achieve a more unified, cross-application control. 

4.7 Design Iterations 
The HandProxy system was iteratively designed and developed through pilot studies with 13 participants recruited 
from the student group at the authors’ institution. Participants were asked to use HandProxy to perform object 
selection, manipulation, and transformation tasks in a test virtual environment, and is then interviewed for their 
experiences and potential improvement suggestions. Here, we summarize key aspects from these iterations, with 
the goal of providing additional rationale behind our design choices and insights into user preferences. 

4.7.1 Enhancing the Speech Interface. The speech interface is a core component of HandProxy. In our initial design, 
we followed a traditional turn-based interaction approach, similar to off-the-shelf speech interfaces [7], where 
users issue a command, wait for execution, and then issue the next command. However, our pilot studies revealed 
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that this approach was inefficient for hand control. Many participants preferred to issue multiple commands 
continuously, describing an entire sequence of actions in one go. The forced pauses between commands disrupted 
the interaction flow, making it less natural. Additionally, it was difficult for users to issue commands to override 
current executions, such as stop or undo, as users had to wait for the previous command to finish before issuing 
a correction. As a result, we redesigned the speech interface to support continuous input, allowing simultaneous 
speech recognition and action execution. This change also motivated the parallelized system architecture, where 
each module runs in a separate thread, ensuring that speech processing, command interpretation, and execution 
run without blocking other processes. 

Additionally, we observed variations in user preferences for the level of detail in commands. Some participants 
preferred step-by-step instructions, such as “move left,” “move up,” “grab,” while others issued higher-level 
commands, such as “put the cube into the basket,” expecting the system to infer intermediate steps. This motivates 
the choice of integrating LLMs (GPT-4o), instead of rule-based systems, into the speech interface to support 
flexible and diverse speech patterns and leverage their reasoning capabilities to interpret user intent dynamically. 

4.7.2 Integrating Contextual Information. Throughout our iterations, we observed that participants naturally 
used descriptive references to identify target objects, including shape, appearance, and relative location. Examples 
include “green ball” or “the object next to the button.” This demonstrated the need for contextual understanding, 
which motivated our decision to incorporate object metadata into the system. 

While advanced vision models could enhance contextual understanding, we drew inspiration from accessibility 
metadata in 2D user interfaces and implemented a metadata structure for virtual objects. Each object is assigned 
a set of descriptive tags, allowing the system to recognize and differentiate objects based on user descriptions. 
Additionally, many object references rely on common knowledge (e.g., “a green fruit with stripes” is likely a 
watermelon). To enhance generalizability, we integrated LLMs to allow HandProxy to reason beyond predefined 
metadata and infer likely object references based on common knowledge and context. 

4.7.3 Improving System Transparency. Speech recognition errors are a common challenge, and pilot study users 
expressed the need for visibility into how their commands were interpreted. This feedback motivated several 
transparency-focused design choices, including showing the recognized results and visualizing the path of the 
expected hand movement. These features ensure that users can intervene in real-time when error happens using 
commands like stop or redo, which ultimately improves interaction reliability and usability. 

5 User Study 
We conducted a user study with 20 participants to evaluate the HandProxy system and gather insights on usage 
patterns and feedback. Specifically, we aim to answer the following research questions: 
RQ1. To what extent can participants complete a wide variety of tasks using HandProxy? 
RQ2. How effectively can the system interpret the diverse ways in which users issue commands? 
RQ3. What strategies, preferences, and methods do participants use for specifying intent? 
RQ4. How do participants experience and perceive HandProxy? 
RQ5. What other expectations do participants have for the system? 

5.1 Participants 
We recruited 20 participants (9 female, 11 male, age 18-31) from the student population at our institution. Based 
on a self-reported survey, 3 participants had no prior experience in immersive environments (e.g., VR/AR), 13 
were beginners, and 4 were intermediate users. For experience with hand-gesture-controlled interfaces (e.g., 
XR headset like Meta Quest or hand tracking cameras like Kinect), 5 participants reported no experience, 12 
were beginners, and 3 were intermediate users. Regarding speech interfaces, 1 participant had no experience, 5 
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Fig. 6. Virtual environment for the user study (a), with different interactable 3D objects and UI widgets. Participants were 
asked to perform various hand interactions by commanding the virtual hand in the environment. Task examples include but 
not limited to twist knob (b), grab fruit (c), push cube (d), and pinch to resize window (e). 

were beginners, 12 were intermediate users, and 2 were experts. Examples of speech systems included virtual 
assistants like Siri or Alexa, ChatGPT voice mode, and speech input on TV remotes. The study was approved by 
the IRB, and participants received $30 gift cards as compensation. 

5.2 Apparatus and Procedure 
The study sessions were held in a small meeting room. Participants sat in front of a TV connected to a workstation 
laptop with i9-12900H CPU, which runs the 3D virtual environment in Unity. This setup is to provide an equivalent 
experience for all participants. As shown in Figure 6, the virtual environment in Unity is designed to have different 
3D objects and UI widgets, supporting a variety of interaction tasks. The interactions are triggered only by 
collision or gesture detection of the virtual hand. The Unity app does not provide dedicated API to trigger 
interaction. Each study session took 2 hours. 

Overview (10 minutes): participants were broadly introduced to the project and the system setup, and were 
asked to fill out the pre-survey on their prior experiences. 
Study tasks (60 minutes): for each task, participants first watched a video clip demonstrating a virtual 

hand performing the intended hand interaction. They were then instructed to replicate the interaction using 
speech through HandProxy. To minimize bias toward specific commands, no guidance was provided beyond the 
video demonstration, except when participants required clarification or assistance. For mid-air gesture tasks, 
participants were asked to complete the task directly. For other tasks, interactions were conducted with three 
different objects. During the initial practice session, participants used the first object to explore the system’s 
capabilities and limitations by experimenting with different commands. In the subsequent test session, they 
performed the same interaction on two additional objects, aiming to complete the task as accurately as possible. 
The tasks below are selected based on common types of interaction tasks in the virtual environment [53], including 
selection, manipulation, and transformation. 
(1) Warm-up with mid-air gestures: participants were asked to use speech to reproduce common mid-air 

gestures on commercial XR devices [3, 6] as a warm up, which included pinch, swipe left, double pinch, and 
thumb up. They served to familiarize participants with the system and the basic gestures, and to prepare 
and on-board them for subsequent tasks. 
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(2) Hand interactions: participants were asked to perform a wide range of interaction tasks for virtual environ-
ment [53], including object selection, manipulation, transformation. The tasks included object dependent 
gestures (grab {apple, peach, blue cube}, press {confirm, minimize, power} button, pinch {blue cube, vol-
ume slider, resize button}, push {confirm, like, power}) and disambiguation (grab the {left, middle, right} 
watermelon among the 3 watermelons). 

(3) Movement and rotation control: this included hand movement (move {left, up, forward}), object movement 
(put the {apple, peach, blue cube} into the basket, rotation (turn the brightness knob {clockwise, counter-
clockwise}). Participants were also asked to perform tasks that required timing control. This included grab 
the {apple, peach, cube} and move to the left according to a light signal (green = move, red = stop), and to 
press and hold the {power, like, confirm} button. 

(4) Complex tasks: for these tasks participants were only shown the image of the final outcome, without 
demonstrating the steps to accomplish it. It was up to the participants to decide what and how many 
steps to take to finish the task. These include tasks to make the window wider, put apple, peach and first 
watermelon into the basket, and maximize the volume. 

Free exploration (10 minutes): participants had the opportunity to freely explore the environment using 
commands of their choice to investigate the system’s capabilities and limitations. A Likert scale questionnaire on 
system usability was given at the end. 
Semi-structured interview (40 minutes): participants were interviewed about system performance, user 

experience, interaction strategies, desired features, and suggested improvements. 

5.3 Methodology and Procedure of Data Collection and Analysis 
To support quantitative analysis, the system logged the recognized text, decomposed json output, executed hand 
controls, and system feedback (e.g., visualization, error messages) for each of the command user gave during 
the study. For commands that were incorrectly recognized, the researcher noted down the original command 
for analysis. For commands that were incorrectly interpreted or executed, the researcher marked the specific 
task and used the system log for further analysis. The command inference time was also recorded to evaluate 
the system responsiveness. To focus on task-related input, we excluded user input that were not relevant to the 
task they were asked to perform. This could be due to misunderstanding of the task goal, or accidental misspoke 
commands. At the end, a questionnaire with Likert scale questions were used to evaluate the system usability. 
For qualitative analysis, we audio-recorded semi-structured interviews with participants’ permission, and 

conducted a thematic analysis [19] on the transcripts. The primary researcher generated the initial codes and 
themes, and collectively discussed and examined the results with the research team to reach consensus. 

6 User Study Results 
Below we present the study results. Unless otherwise noted, the findings are based on data from the test sessions. 

6.1 RQ1: To what extent can participants complete a wide variety of tasks using HandProxy? 
Participants successfully completed a wide variety of tasks using HandProxy, with an 100% task com-
pletion rate on tasks conducted in the test sessions. Among the 781 commands participants issued across all 
test sessions, the system correctly executed 717 of them, resulting in an overall accuracy of 91.8%. The median 
command execution accuracy per participant is 92.5%, with an IQR of 89.3% to 95.5%. On average, the system 
took 1.66 seconds to interpret the recognized speech command, with an standard deviation of 0.94 seconds. 
After errors happened, participants were able to recover from errors by using alternative commands 

to complete the task. Multiple techniques were reported for error recovery, including rephrasing (13), repeating 
(3), and splitting into smaller steps (3). Across all commands in the test sessions, an average of 1.09 attempts (std 
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0.33) were needed for a command to succeed. Specifically, 85.5% of error commands were resolved with 1 more 
attempt, 12.7% took 2 more attempts, and 1.8% took 3 more attempts, showing that most errors were corrected 
with one alternative attempt. 

6.2 RQ2: How effectively can the system interpret the diverse ways in which users issue commands? 
HandProxy effectively handled users’ diverse ways of phrasing commands, including less common 
ones. To identify unique commands per task, we lemmatized and removed stopwords from each command used 
by participants during test sessions. Figure 7 shows the histogram and normalized entropy of unique commands 
participants used to complete study tasks. The normalized entropy quantifies the variation in the distribution of 
commands with a value from 0 (all attempts were dominated by a single command) to 1 (each attempt corresponds 
to a unique command). Both the histogram and normalized entropy shows the diversity of commands participants 
used. Specifically, tasks were not dominated by just one command but were distributed across various commands, 
and the system was able to interpret most commands, including those used less frequently. 
During practice sessions, participants generated an average of 32 unique commands per task. The system 

successfully interpreted command variations, including different verbs (e.g., {grab, pick up, fetch, hold} the peach), 
object descriptions (e.g., peach, pink fruit), spatial references (e.g., first fruit, second watermelon from the left), 
and sentence structures (e.g., can you use the minimize button, peach inside the basket). Moreover, the system 
demonstrated the ability to interpret and decompose high-level commands and generalize beyond literal meanings. 
For example, it interpreted “increase the brightness” as (i) grab the brightness knob and (ii) twist right. In the 
example of “fold the window,” the system was able to connect fold to minimize, and press the minimize button. 

After practice sessions, as shown in Figure 7, participants continued to use diverse commands and phrasings 
rather than relying solely on the most straightforward command, and the system effectively handled this variability. 
Given that participants were free to use their own words without predefined commands or formats, these results 
highlight HandProxy’s capability to interpret flexible and varied input. 

To better understand HandProxy’s limitation, we analyzed the retried commands in the test sessions. In total, 
the system failed to execute or incorrectly executed 64 commands. Among them, 40 valid commands were 
categorized as invalid, and the system prompted users to try again and did not perform any action. Most were 
due to challenges for the LLM in identifying target objects (n=26), including synonyms (9), visual descriptions (6), 
object functionality (6), positional constraints (3), or other system errors (2). For example, participants described 
the power button as “the white and round button on the right side of the screen” (P1), the basket as “the brown 
object” (P16), or directly described the visual content within a widget, such as describing the window as “the 
dog photo” (P2). In other cases, participants referred to objects with synonyms or their expected functionality, 
such as describing the power button as “start on off button” (P10), or the heart button as “favorite button” (P16). 
While in many cases the system could infer beyond the object metadata, it struggled to account for the possible 
descriptions described above. This highlights the need for a more comprehensive understanding of the objects 
and environment to support more diverse descriptive commands, which we will discuss in future work. 

Apart from invalid commands with no action, the system incorrectly executed 24 valid commands. Among these, 
3 were due to speech recognition errors, while 18 resulted from misinterpreted hand interactions. These include 
ambiguous commands (6), incorrect command decomposition (5), incorrect gesture parsing (4), or performed on 
the wrong target objects (3). Some commands had multiple possible interpretations, where context could have 
clarified the intended meaning. For instance, when P6 said, “turn the volume slider to maximum,” the participant 
expected the slider to move to the top. However, the LLM interpreted the word “turn” literally and the system 
performed a “twist right” gesture instead. Errors also occurred when participants combined multiple commands 
into one sentence. For example, P20 said, “pinch the resize button and pull it to the right” to make a window 
wider, expecting a continuous pinch-and-move gesture. Instead, the LLM parsed “pull” as a separate command, 
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# Rate HN Distribution Successful Not Successful 

9 100% 0.83 

13 100% 0.88 

11 95% 0.85 

16 83% 0.91 

8 91% 0.71 

9 91% 0.8 

12 91% 0.89 

14 87% 0.81 

13 95% 0.92 

16 91% 0.96 

13 100% 0.9 

13 80% 0.81 

14 100% 0.93 

16 95% 0.91 

17 95% 0.96 

18 100% 0.99 

19 100% 0.99 

22 91% 1 

14 100% 0.94 

13 100% 0.84 

Move {apple, 
peach, cube}to the 

left following 
traffic light signal 

Press and hold the 
{power, like, 

confirm} button 

Rotate the 
brightness knob 

{clockwise, 
counterclockwise} 

ID 

1 

2 

3 

4 

10 

5 

6 

7 

8 

9 

Task Task Image 

- grab the second watermelon 
- grab the watermelon in the middle 
- grab the watermelon 2 
- pick up the second watermelon 
- grab the watermelon, second from the left 

- grab the second green object 
- hold the green ball in the middle of the table 
- hold the green watermelon in the middle of the table 
- grab the watermelon to the right of the first watermelon

- move left 
- move hand leftward 
- move your hand from right to the left 
- push your hand to the left 
- slide the hand from right to left 

- sweep your hand out to the left 
- move the hand across the screen 
- swipe the hand from right to left 
- move your hand across the room

Test Sessions Example Commands 

Grab the {peach, 
apple, cube} 

Pinch the {resize 
button, blue cube, 

volume slider} 

Press the 
{minimize, 

confirm, power} 
button 

Push the {confirm, 
like, power} button 

Grab the 
watermelon {in the 
middle, on the left, 

on the right} 

Move hand to the 
{left, up, forward} 

Put the {apple, 
peach, blue cube} 
into the basket 

- point and push the power button 
- push the power button and keep your hand on it 
- point and press the power button 

- press the confirm button 
- palm that confirm button 
- hit the confirm button 
- press confirm button with palm 
- touch confirm button

- drop the peach in the basket 
- grab the peach and put it in the basket 
- move the peach in the basket 
- pick up peach; move hand up; move hand to the 
left; release 
- peach inside the basket 

- peach in the basket 

- pick up the peach 
- grab the first fruit 
- grab the pink fruit 
- put your hand to the peach and hold it 
- go fetch the peach 

- grab the smallest fruit 
- grab the fifth fruit from the right 
- put your hand on the peach 
- pick up the first fruit at the center of the table 
- grab the third item from the left

- minimize the screen 
- click the minimize button 
- fold the image of the dog 
- press the yellow button that says minimize 
- can you use the minimize button 

- click on the up arrow 
- click on the upper right corner of the window 
- point to the yellow arrow 
- I do not want to see the dog 
- push the minimize button

- pinch resize 
- do a pinch gesture at the corner of the resize 
- pinch on the resize 
- pinch on the resize button on the screen 
- do a pinch gesture at the resize button 

- resize 
- pinch the bottom right corner of the screen 
- use the resize button 
- pick up resize 
- grab the resize button

- push confirm 
- press the confirm button 
- push the confirm button with your palm 
- slap the confirm button 
- move to the confirm button and push it 

- point the power button and keep your finger 
there 
- keep pointing to the power button 
- long press power button 
- hold the power button- apply pressure to the 
power button 

- move the apple to the left; stop; move left 
- grab the apple; go to the left; stop; go 
- hold the apple; move left to the screen; stop; go 
- pick the apple and move your hand in the left 
direction; stop; move left 
- pick up the apple and move it to the left; stop; go 

- move the apple to the left when the light is green 
- pick up the apple and move left when the light is green and 
stop moving when the light is yellow or red 
- move the apple outside the screen 
- move apple to the left according to the traffic light 
- move left when the circle on the top of the screen is green 

- increase the brightness 
- turn the brightness knob to the right 
- twist brightness to the right 
- make the photo brighter using the brightness 
button 
- screw the brightness button rightward 

- turn up the brightness button 

Fig. 7. Command diversity in test sessions: Each task was repeated on three objects — one for practice and two for test 
sessions (top row: second object, bottom row: third object). We report the number of unique command phrasings (#), 
execution accuracy (Rate), normalized entropy (𝐻𝑁 ), and a histogram showing the distribution of unique phrasings, sorted 
by frequency. We color-coded the successful attempts as blue and unsuccessful attempts as red to illustrate the distribution 
of correct/incorrect commands. Finally, we provide examples of successful and unsuccessful participant commands. 
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initiated a “grab” gesture that canceled the pinch and caused an unexpected action. The system identified the 
wrong object from some other commands. For example, P5 said “pick up the first watermelon on the right” to 
refer to the rightmost watermelon, but the system interpreted it as the first watermelon overall (left to right). 
Nonetheless, participants were able to complete 100% of the tasks and recover from errors using alternative 

commands, with an average of 1.09 attempts (std 0.33) per command. 

6.3 RQ3: What strategies, preferences, and methods do participants use for specifying intent? 
Participants demonstrated diverse strategies and preferences while prompting the system. During 
practice sessions, the average command length was 5.25 words (std: 2.72, median: 5). In test sessions, this was 
slightly lower, with an average of 4.73 words (std: 2.32, median: 4). For free exploration sessions – where users 
were not restricted to specific tasks – the average command length increased to 5.95 words (std: 3.32, median: 5). 
Participants who preferred more detailed commands found it easier to “specify what I want” (P2) or believed it 
would “help the system understand” their intent more accurately (P7). For example, to grab the peach, P15 used 
the command, “can you grab the peach and hold it in your hand?” In the interviews, 14 out of 20 participants 
favored shorter commands for their simplicity, clarity, and lower risk of errors. As P16 mentioned, “The longer it 
is, the more words I could say wrong and it could misinterpret.” 

However, having shorter commands does not necessarily mean commands are always simple and low-level. In 
fact, participants used a mix of high-level and direct commands, such as “maximize the volume” (high-level) or 
“pinch the volume slider” followed by “pull up” (direct). For example, P9 mentioned that “I just wanted to tell the 
system what I want to do, and let the system figure out what gestures to do,” while others mentioned that using 
detailed control would be “more accurate” (P8), especially in precise tasks (P11) or those that need fine-grained 
controls (P6). Participants also reported the need to switch to a new mental model while using the system. This 
led some participants to use more descriptive ways of specifying their interaction intentions, such as “touch your 
index finger and thumb” to describe the pinch gesture (P13). As P17 said, 

“A lot of the motions that you intuitively perform didn’t come to me in words very easily. So my strategy was to 
describe exactly what the hand was doing until I’d sometimes realize, ‘Oh, that’s how it should be [described]’ ” 

6.4 RQ4: How do participants experience and perceive HandProxy? 
We evaluated system usability using 7-point Likert scale questions, covering system effectiveness, interaction 
variety, ease of use, responsiveness, learnability, consistency, and user confidence. The questions are based on the 
System Usability Scale [20], with modifications to better align with the specific tasks in this user study. The Likert 
scale questions were administered three times at different stages to identify potential learning effects. However, 
no significant differences were found across the three sets of responses. Therefore, we report the results from the 
final administration that were conducted after all tasks were completed, as they provide the most comprehensive 
reflection of participants’ overall experience with the system. 

Overall, participants found HandProxy effective for hand interactions (avg. 5.5, std. 0.82), can support various 
interaction gestures (average 5.75, std. 0.91), easy to use (average 5.7, std. 1.12), and participants were generally 
confident in using it (average 5.3, std. 1.08). Regarding system responsiveness, participants gave an average 
of 5.15 (std. 1.18). While participants appreciated the fast timing controls (e.g., stop, continue, undo) (e.g., P6), 
overall responsiveness across different types of commands could be improved for smoother interaction (P2, P8). 
HandProxy was also seen as intuitive and easy to learn (avg. 5.7, std. 1.41), especially given that the study was 
intentionally designed to have only a very brief on-boarding session. As P3 mentioned, “a few minutes of play 
and you should be ready.” However, P15 highlighted challenges for users unfamiliar with AR/VR, often relying 
on long, descriptive commands and struggling with terminology. Both P15 and P11 suggested that a tutorial with 
example commands, words, and objects would make the system more intuitive for beginners. 
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Fig. 8. Final Likert scale responses of system usability. 

Additionally, participants valued HandProxy’s ability to handle high-level commands (P1, P2, P8, P11, P19); 
robustness to certain ambiguity in the command (P5, P10, P11); consistency on the same task (P7, P15); its memory 
capability (P19); and its ability to take continuous speech input and perform actions on the go (P7). For example, 
P1 mentioned that HandProxy is able to directly execute her high-level commands step by step, “even though I 
haven’t told the system how to perform the actual task.” 
Interestingly, we found that participants had different perceptions of the virtual proxy hand – either 

as an interaction tool, an agent, or a part of their body. These not only impacted the way they used it, but 
also their expectations about the system’s capabilities. Participants who perceived HandProxy as a tool treated 
the virtual hand more like a cursor, and cared more about what it could achieve than how realistic the interaction 
was, and in some cases, suggested that it should go beyond what a real hand can do. As P11 mentioned, 
“I don’t know if the system can make the hand more abstract. For example, it could hold many things at a time. 
It may not need to be limited to the physical world, allowing for actions beyond what we can do in real life.” 

This perception of HandProxy as a tool also influenced how participants talked to the system. For example, 
P7 used simple, direct, “non-human speech” to complete tasks, “just like other voice controls that’s relatively 
old.” This perception may have led some participants to underestimate the system’s ability to handle high-level, 
complex input. As P14 said, “I thought it only do steps, but later found it does whole tasks and I will do that.” 
However, participants who perceived the system as an agent would prefer to treat it as an assistant or “you,” 

expecting it to understand high-level commands, or even answer questions related to the environment. For 
example, participants mentioned that talking to this system is similar to “talk[ing] normally and intuitively like 
you would to a person” (P2). When there is confusion, participants may expect to get answers from the system. 
For example, P18 hoped the system could help him identify objects when he forgot their names: “for example, I 
could say, What’s that green-striped object? and it could respond, It’s a watermelon.” 
Additionally, some participants treated the virtual hand as an extension of their body that just “behaves like 

my arm” (P12), which could enhance immersion in the virtual environment. P13 said, 
“Essentially, you want to immerse your hand into this [...] virtual environment. It’s about bridging the gap 
between you and the virtual space, allowing direct interaction with what’s inside, like in Minecraft or other 
virtual worlds. You’d want to ‘put your hand in’ and interact with objects or perform tasks as if you were 
physically present in that environment.” 
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6.5 RQ5: What other expectations do participants have for the system? 
In the free exploration session, many participants tried commands requiring multimodal understanding of the 
environment, context, and how different objects are related to each other. For example, P18 wanted to say “like the 
dog” to press the heart button on top of the image viewer window. This expectation of environment understanding 
also extends to how the physics work in the virtual environment, such as “throw the apple to the dog” and “catch 
the apple right before it hits the table.” Commands based on visual descriptions were also used. As P19 mentioned, 
“For example, if I forgot the name of an object, like a watermelon, and describe it as a ‘green-striped round 
object,’ I’d expect it to recognize the object. In real life, there are moments when you can’t recall names, so being 
able to describe objects and have the system understand would be helpful.” 
Participants also tried additional gestures that the system did not yet directly support, such as roll, throw, 

flip, wipe, and detailed finger controls. While there was no direct match to these gestures, HandProxy still tried 
to utilize existing gestures to reproduce the command to its best. For example, the system performed a grab 
and rotate to “flip a basket.” In addition, participants also suggested other hand controls that could be useful, 
including bimanual control (P1, P2, P13), supporting more precise, affordance-dependent object interaction (P2, 
e.g., grab the basket handle/side), and detailed individual finger controls (P5). Additionally, participants would 
like the system to understand object states and conditions in the environment. For example, P20 tried “if the 
photo has been resized, press the confirm button,” This also includes monitoring the state of the object while 
being manipulated by the virtual hand. For example, P13 mentioned that, “There was one time when it was 
trying to move the apple but didn’t realize it no longer had the apple in its hand,” if the system was aware of the 
hand state, it could automatically correct this error. These require understanding and monitoring the object state 
to relieve users from “monitoring conditions constantly.” (P19) Participants also emphasized the importance of 
additional feedback to help users identify and recover from errors. For example, P6 recommended underlining 
the parts in user’s command that are confusing or uninterpretable, enabling users to rephrase their input more 
effectively in subsequent attempts. P1 suggested having the system predict and suggest possible next moves 
after the command, such as showing all afforded hand interactions once the user grabbed an object. Additionally, 
participants noted that improving the speech recognition system and reducing overall latency could enhance the 
system’s usability. Current limitations and possible extentions on HandProxy are further discussed in section 7. 

7 Discussion and Future Work 
Here, we expand on our key findings and discuss their implications for future work, including handling ambiguity, 
system transparency, supporting bimanual interaction, and creating a unified accessibility API for hand interaction. 

7.1 Handling Ambiguity in Interaction Commands 
Ambiguity is inherently a part of the natural language, as certain commands could be interpreted in different 
ways. Addressing this challenge requires understanding the user’s true intentions. Based on observations from 
the user study, two key questions arise: (i) what additional information can be leveraged to resolve ambiguity, 
and (ii) how should we balance the system’s ability to disambiguate and requesting clarifications from users. 
During the user study, the commands that were considered “ambiguous” by the system were often due to 

insufficient understanding of the environment and the target objects, including visual features, complex spatial 
referencing, and object affordance. The current disambiguation design is mostly focusing on disambiguating 
duplicate objects. However, as discovered in the user study, additional ambiguity could come from the use 
of synonyms, or commands that have multiple interpretations. In cases of ambiguity, the system sometimes 
took initiatives and filled in the necessary information. While this worked in some cases, it inevitably caused 
unexpected behavior (e.g., interpreting “turn the volume slider to maximum” as rotate volume knob to the right, 
rather than moving up). This highlights a design challenge that even with additional information about the 
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Fig. 9. Spectrum of command granularity, with an estimated preferred range highlighted on the spectrum. 

environment, it is important to determine what can and should be automatically inferred by the system, and 
what should be prompted to users for clarification. An avenue for future work is to investigate how the system 
should balance automated inference and user clarification to consider both accuracy and user effort. 

7.2 Supporting Multiple Levels of Interaction Control 
Hand interaction commands can vary in granularity along the spectrum shown in Figure 9, with trade-offs in 
gesture reproducibility, ambiguity, user workload, and system capability. At the high-granularity end of the 
spectrum, users have full, precise control of the hand. This allows users to reproduce almost any hand gesture and 
even fine-tune or customize gestures. While such commands are less ambiguous, they impose a higher cognitive 
and physical workload on users due to the detailed input required. Conversely, at the low-granularity end of the 
spectrum, users can issue abstract, high-level interaction goals, leaving the system to determine how and what to 
do to achieve the goal. While this reduces user effort and simplifies command input, it comes with the trade-offs 
of reduced precise control, increased ambiguity, and a greater demand on the system’s interpretation capabilities. 
To design effective and efficient speech to hand controls, it is important to define an appropriate range of 

supported commands that balances granularity and usability. We observed and estimated a preferred range for 
hand controls from our study, illustrated in Figure 9. The preferred range skews toward the low-granularity 
end of the spectrum, with spacings on both left and right. The left end of the spectrum, although having 
more hand control possibilities, was not included because of the control complexity. Although participants 
preferred high-level commands, they may require significant system intelligence, and would likely introduce 
unnecessary ambiguity. These initial findings provide possible considerations for designing speech interfaces for 
hand interaction controls. However, further studies are needed to refine our understanding of the optimal level of 
command granularity and its impact on usability. 

7.3 Improving Transparency and Gesture Discoverability 
During the user study, participants often struggled to identify the specific part of their commands caused issues 
when errors occurred. We believe the feedback system could be improved by providing more details about how 
the system interprets commands, and should highlight the ambiguous parts and how the system interpreted them. 
These could be achieved through a better-designed text feedback of the recognized command, such as to color-
code the words in the command by the level of ambiguity and highlight the parts that could not be interpreted. 
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Without overwhelm users with excessive feedback, such improvements could enhance the transparency of the 
system, help users effectively refine their inputs and improve their overall experience. 
In addition to addressing errors, the interactions’ discoverability remains an area for improvement. While 

flexible speech interfaces alleviate the challenge of knowing exactly what to say, participants may still struggle to 
identify the possible affordances for a given object. Although HandProxy is able to infer expected gestures from 
high-level commands to some extent, it could be further improved by proactively showing possible interactions. 
For example, P3 suggested showing a list of possible next steps after each interaction, such as options like “throw,” 
“squeeze,” or “drop” after an apple is grabbed. This could not only help users discover additional affordances but 
also accelerate workflows by suggesting the most relevant next steps based on the interaction history. 

7.4 Supporting Bimanual Interactions 
Bimanual interactions offer greater possibilities than unimanual (i.e., one-handed) interactions. Immersive apps 
such as Paper Birds2 and Cubism3 utilize both hands either collaboratively (e.g., performing a joint action) or 
separately (e.g., one hand for object manipulation, the other for view control). While we demonstrated the 
feasibility of speech-controlled one-handed interactions, the system could be extended to support bimanual 
interactions — either controlling both hands or a single proxy hand collaborating with the user’s real hand. 

Future work could expand the design space for bimanual interactions along two key dimensions: (i) the type of 
bimanual interactions, and (ii) the level of proxy controls. For interaction types, Yamagami et al. [86] categorized 
bimanual interactions into symmetric in-phase (e.g., jump-roping), symmetric out-of-phase (e.g., climb a ladder), 
asymmetric coordinated (e.g., swing a golf club), and asymmetric uncoordinated (e.g., use two swords at the 
same time). Regarding the level of proxy controls, the system could be designed to perform bimanual interactions 
directly through two proxy hands, or employ one proxy hand that monitors, interprets, and collaborates with the 
user’s one-handed input. This expanded design space could better support bimanual interactions. 

7.5 Limitation on Applicable Use Cases 
While the proposed approach is designed to generalize across a wide range of interaction scenarios, it may 
not always offer substantial advantages over alternative methods. For more direct and less hand-dependent 
interactions – such as basic system operations (e.g., power on/off) or standard UI controls (e.g., closing windows) 
– a traditional speech interface with direct command mapping may be more effective. Interactions requiring high 
precision or complexity, such as fine-grained rotations in training or simulation-based XR applications, may pose 
challenges when relying solely on the proposed speech interface. Furthermore, although our approach leverages 
commonly used gestures across various immersive applications, the current implementation does not readily 
accommodate applications that heavily depend on customized, non-standard hand gestures. For example, the 
spell-casting game Drakheir Hands of Wizard4 requires specialized gesture inputs that are not easily replicated 
within the existing system. These observations suggest that further enhancements are needed to support a 
broader range of use cases, particularly those involving diverse gesture types, varying levels of precision, and 
additional control requirements. 
As an initial exploration of the proxied interaction paradigm for speech interfaces, HandProxy shows the 

potential of using virtual hands to broaden interaction possibilities. Future work could address current limitations 
through the integration of multimodal input strategies that adaptively optimize interaction based on task type and 
complexity. Additional improvements might include support for runtime gesture recording to enable customizable 
gesture macros, as well as integration with system-level APIs to facilitate cross-application control. 

2https://www.3dar.com/p/paper-birds 
3https://www.cubism-vr.com/ 
4https://www.meta.com/experiences/drakheir-hands-of-wizard 
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7.6 Towards an Accessible Interface for Hand Interactions 
A key motivation of this work is to find an expressive, flexible alternative to hand interactions in cases of 
situational impairments, ability mismatches, or user’s varied preferences. While this work demonstrated how 
speech interfaces can be enhanced to achieve this goal, it brings up a broader question: can we define a unified 
control interface for possible hand interactions in the virtual environment — just like defining an API for 2D 
cursor controls, so that the interactions can be mapped to a broader range of input modality setups, potentially 
accommodating a wide range of user’s abilities and preferences? 

To achieve this, it is important to create a comprehensive, well-defined set of vocabularies for hand interactions 
in the virtual environment. Then, the direct mapping between the hand input and an arbitrary input modality 
could be simplified to the mapping to this shared vocabulary. This approach could enable flexible and extensible 
mapping of hand input to other input setups, including multimodal configurations, that could be used to provide 
a more accessible way of interacting with the virtual environment. 

8 Conclusion 
We presented HandProxy, a system that enables users to control a virtual proxy hand using natural speech 
commands, allowing it to perform various hand interactions on the user’s behalf. To achieve this, we defined a 
set of hand control primitives and demonstrated how different hand interactions can be composed by combining 
these primitives. Building on this structure, we implemented HandProxy as a real-time system that supports the 
continuous streaming and execution of user commands with varying levels of granularity. Through a user study 
with 20 participants, we demonstrated that HandProxy effectively enables users to complete a wide range of tasks 
typically designed for direct hand interactions, and showed that HandProxy is able to interpret diverse command 
variations. Additionally, we explored user strategies, preferences, and expectations regarding speech-driven hand 
interactions. Finally, we reflected on key findings from the study and discussed their implications for future 
developments, including resolving ambiguity in user commands, supporting varying levels of interaction control, 
enhancing system transparency and gesture discoverability, supporting bimanual interactions, and directions 
towards an accessible interface in virtual environment. This work demonstrates the potential of speech interfaces, 
augmented by interaction proxies, to expand their capabilities and facilitate more expressive interactions. Our 
findings highlight new possibilities for initiating expressive interactions through speech interfaces and point to 
future directions for enhancing usability, adaptability, and intelligent interaction proxies in virtual environments. 

A Example Gesture Metadata File 
{ 

"name": "cut", 
"data_format": "unified", 
"data_source": "leap_motion", 
"num_hands": 1, 
"right_hand_data_file": "cut.txt", 
"left_hand_data_file": null, 
"is_hold_at_peak": false, 
"is_static": false, 
"interacting_frame": 81, 
"interacting_joint": ["pinky_mcp"], 
"segments": [ 

{ 
"name": "preparation", 
"start_frame": 0, 
"end_frame": 58 

}, 
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{ 
"name": "stroke", 
"start_frame": 58, 
"end_frame": 123 

}, 
{ 

"name": "retraction", 
"start_frame": 123, 
"end_frame": 200 

} 
] 

} 
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