
HandProxy: Expanding the Affordances of Speech Interfaces in
Immersive Environments with a Virtual Proxy Hand

CHEN LIANG, University of Michigan, USA

YUXUAN LIU, University of Michigan, USA

MARTEZ MOTT, Microsoft Research, USA

ANHONG GUO, University of Michigan, USA

Fig. 1. While XR devices increasingly support dynamic hand interactions, the corresponding speech-based interfaces remain
limited (a). While adding speech commands enhances interface capability (b), they lack scalability for diverse hand interactions.
We introduce the approach of using a virtual proxy hand that enables users to describe their desired interactions, which
the system translates into executable hand movements (c). This approach supports various interactions, such as UI control,
object manipulation, and interactions that emerge from physics, collisions, or hand rotation and movement (d).

Hand interactions are increasingly used as the primary input modality in immersive environments, but they are not always
feasible due to situational impairments, motor limitations, and environmental constraints. Speech interfaces have been
explored as an alternative to hand input in research and commercial solutions, but are limited to initiating basic hand
gestures and system controls. We introduce HandProxy, a system that expands the affordances of speech interfaces to support
expressive hand interactions. Instead of relying on predefined speech commands directly mapped to possible interactions,
HandProxy enables users to control the movement of a virtual hand as an interaction proxy, allowing them to describe the
intended interactions naturally while the system translates speech into a sequence of hand controls for real-time execution.
A user study with 20 participants demonstrated that HandProxy effectively enabled diverse hand interactions in virtual

Authors’ Contact Information: Chen Liang, clumich@umich.edu, University of Michigan, Ann Arbor, MI, USA; Yuxuan Liu, liurick@umich.edu,
University of Michigan, Ann Arbor, MI, USA; Martez Mott, mamott@microsoft.com, Microsoft Research, Redmond, WA, USA; Anhong Guo,
anhong@umich.edu, University of Michigan, Ann Arbor, MI, USA.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2025 Copyright held by the owner/author(s).
ACM 2474-9567/2025/9-ART107
https://doi.org/10.1145/3749484

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 3, Article 107. Publication date: September 2025.

https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3749484
mailto:anhong@umich.edu
mailto:mamott@microsoft.com
mailto:liurick@umich.edu
mailto:clumich@umich.edu

107:2 • Chen Liang, Yuxuan Liu, Martez Mott, and Anhong Guo

environments, achieving a 100% task completion rate with an average of 1.09 attempts per speech command and 91.8%
command execution accuracy, while supporting flexible, natural speech input with varying levels of control and granularity.

CCS Concepts: • Human-centered computing → Interactive systems and tools.

Additional Key Words and Phrases: Hand interaction, speech interface, interaction proxy, virtual environment

1 Introduction
Hand tracking is increasingly used as the primary input modality on extended reality (XR) devices to interact
with the virtual environment [3, 4, 6]. As a result, many applications are built specifically for hand interactions,
including games, productivity apps, and 2D/3D user interfaces (UI). For example, users can pinch and drag the
corner of a window to resize UI windows on Meta Quest, or grab and move a virtual object to place it in an
desired position in mixed reality on Apple Vision Pro. Games such as Waltz of the Wizard1 rely on various hand
interactions, including grabbing and moving game objects, punching skulls, knocking doors, shaking hands, and
tilting cups to pour water. These examples highlight the expressiveness and complexity of hand interactions
beyond traditional input modalities, and demonstrate diverse interaction possibilities that could only be achieved
with hands in the virtual environments.

However, users may not always be able to perform the expected hand interactions, making it challenging
or even impossible to effectively interact with the virtual environments. This could be caused by situational
impairments [84], e.g., when users’ hands are occupied with other physical tasks, they may not be able to
manipulate virtual objects and interfaces. Environment constraints could also cause challenges, e.g., users may
not be able to move freely in a confined physical space [46], and virtual objects could be out of physical reach
in an enlarged virtual space [82]. Additionally, predefined hand interactions may be inaccessible to users with
upper body limitations [54, 88]. These challenges indicate the need for alternative ways of interacting with
virtual environments, specifically those that can reproduce or achieve similar interaction experiences and the
expressiveness as the original hand interactions.

Among the various alternatives and enhancements to hand input, speech has emerged as an ideal modality due
to its intuitiveness and high degree of freedom. Prior research has explored its uses in object manipulation [79],
navigation [38], and environment creation [9]. Additionally, speech has been adopted as an assistive input modality
in many mainstream XR devices. For example, Apple Vision Pro provides voice control [7] as an alternative to
hand input, which can initiate simple interactions, including tap, swipe, and drag and drop on 2D interfaces. Users
can also issue high-level commands, such as “turn up the volume”, instead of doing it step-by-step. However, these
speech interfaces typically support a limited set of hand interactions and require users to use a rigid, predefined
command format to trigger actions. While this approach works for basic system-level interactions, it falls short
in supporting the complex and diverse interactions a hand can do in virtual environments. This limitation is
particularly relevant to interactions triggered by hand gestures or movements, such as 3D object manipulation
(e.g., pinch, punch, squeeze) and physics-based interactions (e.g., slice a fruit in half with a cutting gesture). Thus,
we seek to address the question: “How can we expand the affordances of speech interfaces to support expressive and
diverse interactions, especially those that can be achieved via hand interactions in virtual environments?”
Instead of merely designing more speech commands, this work proposes an alternative approach: enabling

users to use natural language to control a virtual hand, where it can then simulate corresponding
movements and perform necessary interactions on the user’s behalf. This approach is motivated by the
observation that many interactions result from a sequence of hand movements, where each step contributes
specific meaning to the overall interaction. For example, when pulling a lever, visual effects are triggered as the
hand grabs the handle, the corresponding magnitude changes as the hand moves the lever, and the effect finally
takes place when the hand releases it. Furthermore, many interactions are not explicitly defined but emerge

1https://www.aldin.io/

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 3, Article 107. Publication date: September 2025.

https://www.aldin.io/

HandProxy: Expanding the Affordances of Speech Interfaces in Immersive Environments with a Virtual Proxy Hand • 107:3

Fig. 2. Example of how HandProxy would process the user’s speech commands. The user continuously talks to the system,
where the system concurrently recognizes the commands, decomposes them into steps, parses them into executable hand
control instructions, and calculates the sequence of hand movements to control the virtual hand performing the desired
interaction. The processed instructions are added to a queue for continuous hand control. HandProxy utilizes both rule-based
methods to detect high-priority commands (e.g., stop, undo) and large language model to interpret natural language input.
Whenever a high-priority command is detected (e.g., (5) in the plot), HandProxy will terminate the current execution and
perform the high-priority commands.

as a result of other factors, such as collision and physics. For example, an application may not have a specific
“clean the table” interaction defined, but the user can achieve this by sweeping the virtual hand across the table,
pushing objects away through simulated collision. Therefore, it is impossible to simply create predefined speech
commands for all possible interactions, as interactions themselves could be loosely defined, i.e., they are either
context-dependent or dynamically generated. These considerations motivate our design choice of preserving the
virtual hand within the environment. This allows users to control and reproduce actions as if real hand input is
used, enabling them to perform interactions that mirror the capabilities of a physical hand.
To achieve this, we introduce HandProxy, a system that enables users to control a virtual hand through

continuous, natural speech input. HandProxy is inspired by the concept of interaction proxy [92], where a
virtual hand is used as the proxy layer between the speech interface and the immersive environment, as shown
in Figure 1. We explored existing hand interactions in prior work, commercial devices, and VR applications
[9, 35, 53], and synthesized a list of hand control primitives that could be used for decomposing and reproducing
common hand interactions. Within the comprehensive space of possible hand interactions, this work starts by
focusing on the fundamental, while critical, use case — one-handed interactions. Specifically, we investigate how
one-handed manipulative interactions can be initiated through the speech interface and categorize them into
four key primitives: gesture, target, spatial, and temporal control. These primitives are used as the foundation
to reproduce various interaction, including both detailed controls (e.g., do a pinch gesture, grab the apple) or
high-level interactions (e.g., maximize the volume). As shown in Figure 2, the system captures users’ natural
speech, parses it into a list of executable commands with a Large Language Model (LLM), calculates the desired
hand skeleton data, and renders it in the target system and application. HandProxy is optimized for real-time
interaction, and we demonstrated that it can be used in a variety of interaction scenarios.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 3, Article 107. Publication date: September 2025.

107:4 • Chen Liang, Yuxuan Liu, Martez Mott, and Anhong Guo

To understand how well HandProxy could perform hand manipulations from a diverse range of natural
language commands, and to gain insights from users’ experiences of controlling a virtual hand through speech,
we conducted a user study with 20 participants. Our study shows that HandProxy enabled users to complete a
variety of hand interactions in the virtual environment, including different types of interactions such as mid-air
gestures (e.g., swipe left), direct object manipulation (e.g., twist the knob), high-level interaction tasks (e.g.,
increase the volume), and with varying levels of complexity (e.g., one-step to multi-step interactions). Participants
reached a 100% task completion rate, and took an average of 1.09 attempts for their speech commands to be
correctly executed by the system (with a command execution accuracy of 91.8%). HandProxy was able to handle
diverse variations of participants’ commands for the same tasks, such as using descriptive commands (e.g., “touch
your index finger and thumb” to pinch, “grab the red fruit” to grab an apple), varying levels of details (e.g., to
increase the volume, either grab the slider and move up, or directly say “maximize the volume”), or sentence
structures. Furthermore, participants reported the system to be intuitive, effective, and require minimal learning
to use, and pointed out possible improvements including more detailed feedback for enhanced disambiguation
and discoverability, greater responsiveness, and supporting additional hand controls.
The specific contributions of our work therefore include:

(1) A set of primitives to categorize common hand interactions in the virtual environment, allowing hand
interactions to be decomposed and reproduced.

(2) A real-time system, HandProxy, that enables users to issue natural speech commands to control a virtual
hand to simulate and perform hand-based interactions in the virtual environment.

(3) An investigation into the effectiveness and user experience of using speech to control hand movement for
various interaction tasks in the virtual environment.

2 Related Work
Our work is based on the literature of hand gesture input in XR, alternative input modalities for hand interactions,
speech interfaces, and interaction proxies.

2.1 Enhancements and Alternatives for Hand Interactions
Hand interactions have been widely used as an input method for interacting with virtual environments as it
is intuitive, expressive, and preferred by users [16, 75]. These advantages have made them a core interaction
technique across various devices and application domains, including object manipulation [34, 62, 65, 66], virtual
collaboration [70], creativity support [14, 44, 80], gaming [1], and object retrieval [60].
Despite these advantages, hand interactions also come with certain limitations. Situational impairments [84]

such as occupied hands in AR, physical disabilities [21, 86, 88] such as upper body limitations, fatigue caused by
long-term use of mid-air gestures [37, 43], or environment constraints such as the confined physical space [46]
or out-of-reach virtual objects [82] could limit users’ abilities to perform hand input. Additionally, users may
prefer different gesture [61, 63, 85], making the standardized gesture input less desirable in certain situations.
To address these challenges, researchers have explored various enhancements and alternative interaction

techniques. Some approaches expand hand input capabilities, such as extending the virtual hand for reaching
distant objects [64, 82], using multiple virtual hand copies for easier object selection [68], and exploring customized
gesture sets for users with motor impairments [73]. Others focus on alternative input modalities, including
sensor-based modalities [87, 88], speech-based commands [51], and multi-modal interaction techniques, such
as gaze + voice [31], hand + gaze [78], and hand + speech [83]. However, they are either designed to address a
limited scope of specific scenarios (e.g., basic object manipulation, locomotion) or may require complex input
setups, which are less practical to be deployed on existing devices for a broad range of interaction scenarios.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 3, Article 107. Publication date: September 2025.

HandProxy: Expanding the Affordances of Speech Interfaces in Immersive Environments with a Virtual Proxy Hand • 107:5

Building on insights from prior research, HandProxy uses speech as an alternative modality. This choice
is motivated by the fact that speech is widely accessible across various devices and is already integrated as a
built-in control mechanism in many commercial systems [7, 8]. We explore how speech can be used to initiate an
expressive and diverse range of interactions that usually require hand input. Rather than simply substituting
individual gestures for speech commands, our work expands the capabilities of the existing speech interface
through a proxy hand, enabling users to perform hand-based tasks through flexible and intuitive spoken input.

2.2 Speech Interfaces in Immersive Environments
Speech has been widely adopted as a control mechanism across various scenarios. For example, users can issue
supported voice commands to interact with mobile devices [12, 77] or desktop user interfaces [13, 41]. In robotics,
speech has also been employed to control robot actions [40, 72]. More recently, the integration of speech interfaces
with large language models (LLMs) has expanded these capabilities [11, 24, 28, 59, 67, 76, 94], enabling functions
such as motion planning, task decomposition, and flexible natural language input.
In immersive environments, speech interfaces have been shown to be particularly intuitive, expressive, and

natural due to their high degree of freedom [15, 35, 51]. As a result, it has emerged as a promising input modality
for interactions in virtual environments. Prior work has explored speech-based interactions for a range of tasks,
including virtual objects manipulation [15, 18, 53, 69], locomotion [38], and scene creation [9, 91], using verbal or
non-verbal commands such as breathing or sound actions [2, 71, 95]. Commercial XR devices have also integrated
speech as a built-in assistive input modality. For example, Apple Vision Pro [7], Meta Quest [5], and Microsoft
HoloLens [8] allow users to issue system commands (e.g., volume adjustment, power control) or perform simple
hand gestures (e.g., tap, swipe, drag, and drop) using voice input. While these approaches demonstrate the
versatility of speech interfaces, they require users to follow rigid command structures, and the interactions
supported are limited to basic hand gestures and system functions.
Recently, integrating large language models (LLMs) into speech interfaces has opened up diverse interaction

possibilities, allowing users to directly create, manipulate, query, and engage with their environments through
flexible speech input [9, 25, 79]. Building upon these prior works, we specifically explore ways to expand
the affordance of speech interfaces through a generalizable approach, so that it can enable more interaction
possibilities, while requiring minimal direct modification of individual applications to support it. To achieve this,
we introduce a virtual proxy hand in the pipeline. By describing the movement of a proxy virtual hand in flexible
speech input, we seek to enable expressive interactions in virtual environments, especially those that hands
or only hands can do. Additionally, to design an effective speech-based system, we built upon prior work on
speech interfaces [35, 56, 59], user expectations for AI-driven agents in VR [9], and contextual considerations in
speech systems [90]. These insights inspire the design choices of HandProxy to incorporate embodied knowledge,
contextual understanding, conversational memory, interaction state control, and common knowledge integration
to enhance the system’s ability to interpret and execute user commands effectively. Combining these design
choices, our system can effectively support users to describe their interaction intentions, and the proxy hand can
then perform the necessary interactions on the user’s behalf.

2.3 Interaction Proxies
Interaction proxies are the extra layer inserted between the original and the manifest interface in order to add or
modify interactions without changing the app’s source code [92]. Their ability to introduce new functionality
with minimal modifications makes them particularly valuable for tasks such as input remapping [48, 50, 92, 93]
and UI automation [47]. This concept has also been applied to immersive environments. For example, researchers
have created tangible proxies that map physical input with digital interactions [17, 23, 27, 36, 42]. Other work
explores remapping of complex 3D input motions in VR to a more accessible ranges of motion or simpler input

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 3, Article 107. Publication date: September 2025.

107:6 • Chen Liang, Yuxuan Liu, Martez Mott, and Anhong Guo

Fig. 3. Examples of how hand interactions can be decomposed into one or multiple combinations of hand control primitives.

devices [81]. Some work specifically explored the remapping of hand interactions through the proxied interface
in virtual environments, such as remapping VR hand interactions to mobile devices [46] or finger movement [74]
to facilitate interactions in constrained spaces. Additionally, McGlashan et al. [51] introduced proxy agents as an
interaction metaphor in VR, allowing users to issue commands to virtual agents that execute tasks on their behalf.
Inspired by these ideas, HandProxy explores how expressive hand interactions can be effectively translated

into speech commands. Rather than relying on a rigid set of predefined voice commands for each interaction,
HandProxy allows users to control a virtual hand as a proxy, enabling it to perform actions just as a real hand
would. This approach ensures that users can issue commands in a natural and intuitive way, while the virtual hand
continues to interact with applications as expected. Additionally, this method reduces the need for system-specific
modifications to support the mapping and functionality of the speech interface, making this approach compatible
and generalizable across different applications that accept hand input.

3 Primitives of Hand Interaction
To effectively perform interactions using the virtual proxy hand, it is essential to define a control framework that
can reproduce a wide range of hand movements. Anatomically, the human hand has 27 degrees of freedom (DoF),
covering finger extension, flexion, abduction, adduction, wrist rotation and translation [10]. Given this complexity,
directly replicating all possible hand movements would be impractical for virtual interactions, as each of the 27
DoF needs to be mapped to an input for control. Therefore, in this section, we introduce a simplified control
framework designed to balance usability and expressiveness, and ensure that commonly used hand interactions
in virtual environments can be effectively reproduced while maintaining intuitive control.
Our framework is inspired by the concept of hierarchical gestures [26, 49], where complex hand interactions

can be formed by strategically combining multiple primitive gestures. However, in this work, we take a slightly
different approach — instead of building up interactions from simpler gestures, we explore how commonly used
hand interactions can be decomposed into a small set of shared fundamental control primitives. The goal of this
decomposition is to create a compact yet expressive control framework that simplifies the reconstruction of hand
interactions while still accommodating a wide range of interaction possibilities. Additionally, this approach could
align more naturally with speech input, which is inherently structured as a combination of smaller linguistic
units (i.e., words). For example, given the command “pinch up”, it can naturally be decomposed into a gesture of
pinch and a movement of up, matching the primitive hand controls. With these characteristics, the framework
simplifies the integration of hand control with speech input while also making interactions intuitive for users.
To develop this framework, we reference prior work on hand gesture definitions [45], mid-air gestures

[39, 61, 63], gesture design considerations [85], as well as gesture vocabularies in XR device control [3, 4, 6] and

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 3, Article 107. Publication date: September 2025.

HandProxy: Expanding the Affordances of Speech Interfaces in Immersive Environments with a Virtual Proxy Hand • 107:7

XR applications [1]. In this work, we focus on the fundamental and critical use case — one-handed manipulative
interaction, and identified a set of fundamental hand control “building blocks” that served as the core components
for reproducing diverse interactions, including gesture control, target control, spatial control, and temporal control,
which are discussed below.

Gesture Control: Gesture control defines the fundamental static or dynamic gesture required to initiate a
specific interaction, independent of spatial or temporal constraints. For example, to twist an object clockwise,
the hand must first assume a grab gesture, then perform an additional rotation to complete the action. These
gesture units build the foundation of a hand interaction. In this work, we demonstrate a core set of base gestures
commonly used in virtual environment interactions, such as grab, pinch, and cut. For further technical details on
extending the gesture set, please refer to section 4.
Target Control: A gesture can be either object-independent or object-dependent. For example, a user may

perform a mid-air pinch gesture without interacting with any object (object-independent), or they may execute
the same gesture on the corner of a virtual interface to manipulate it (object-dependent). The goal of target
control is to determine whether a gesture depends on an object, identify the specific target the user is referring
to, and adjust the hand movement accordingly to ensure proper interaction. For example, given the command
“grab the rightmost watermelon”, the target control should recognize this as an object-dependent action, resolve
“the rightmost watermelon” as a specific object, and adjust the virtual hand’s movement path to ensure it reaches
and successfully grabs the correct target.

Spatial Control: Spatial control determines the movement and rotation of the hand in addition to the previous
controls. This includes the movement of the hand in the 3D virtual environment and the rotation of the hand,
including pan left/right, roll left/right, and tilt forward/backward. Beyond basic gesture and target control, spatial
control modifies the movement path and behavior of the hand to enable more complex interactions. This allows
users to perform tasks such as placing an object at a specific location, grabbing and moving a virtual slider,
twisting a knob, or rotating the hand to inspect an item from different angles.

Temporal Control: Temporal control acts as a playback control, regulating the timing and execution of hand
interactions. This includes the ability to pause, resume, accelerate, decelerate an ongoing interaction, as well as
undo, redo, or repeat a previous interaction. These controls enable interactions that depend on timing and states.
For example, a user may pull the lever and stop pulling when they heard a audio cue to stop, or resize the window
by pinching and moving to the right until satisfied. Users can also correct an undesired interaction through undo,
or simplify repetitive interactions through repeating a specific hand state (e.g., do it again / 10 times).

Given these control primitives, a hand interaction can be decomposed into one or more combinations of these
foundational elements. As shown in Figure 3, “pull up” can be broken down into a grab gesture (Gesture Control)
and a upward movement (Spatial Control). High-level commands that require multiple steps can be decomposed
into multiple combinations of these primitives. For instance, “put the apple into the basket” involves three steps –
grab the apple, move to the basket, and release the hand. Through this structured decomposition, the system can
effectively interpret and reproduce a wide array of hand interactions, accommodating both simple commands
and more complex interactions. This framework guides our system design as detailed in section 4, ensuring that
our approach remains flexible and intuitive to various interaction needs.

4 HandProxy: A Speech System for Virtual Environment Interaction Using a Proxy Hand
HandProxy is a system that converts a user’s live speech commands into dynamic virtual hand movements,
allowing the proxy hand to interact with the virtual environment on the user’s behalf. Overall, the HandProxy
system has the following key capabilities:

(1) Flexible natural speech commands: HandProxy allows users to describe interactions in their own
words without rigid formats. It interprets input, decomposes complex commands into executable steps, and

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 3, Article 107. Publication date: September 2025.

107:8 • Chen Liang, Yuxuan Liu, Martez Mott, and Anhong Guo

Fig. 4. An overview of the HandProxy system structure. Given the user input, the speech understanding module recognizes
the speech into commands, and parses the commands into system-interpretable instructions. The instructions are then sent
to the hand control module, which generates the corresponding sequence of hand pose to control the movement of the virtual
hand. Visualization and feedback module generates appropriate visual feedback for disambiguation and better transparency.

prompts for clarification when needed. Users can issue commands at different levels of detail—from precise
hand movements (e.g., “pinch” or “grab the box”) to high-level goals (e.g., “increase the brightness” when a
brightness knob is present), which brings additional flexibility for user input.

(2) Context-aware command processing: By leveraging environment metadata and real-time object p -o
sitions, HandProxy interprets contextual references, allowing users to specify targets based on relative
positions (e.g., “grab the watermelon in the middle”) or object attributes (e.g., “pick up the pink fruit”). It
also maintains a history of interactions, enabling users to reference past actions (e.g., “do it again”) or use
undo/redo functions to restore a hand state, to support intuitive and efficient interaction.

(3) Real-time streaming input and execution: HandProxy takes speech input continuously, allowing users
to speak naturally while the system interprets and executes commands in parallel for a seamless interaction
experience. High priority commands (e.g., “stop”, “undo”) are processed instantly via rule-based methods,
while LLMs handle complex instructions. System components run in parallel to minimize delays.

(4) Feedback for disambiguation and system transparency: To enhance clarity and system transparency,
HandProxy provides visual feedback overlays showing recognized commands, expected hand movements,
and prompts for retry when needed. When multiple objects match an object description in the command, it
shows disambiguation labels to clarify user intent.

In the following sections, we begin with an overview of the system design elements, followed by technical
details of each components, and conclude with a summary of the design iterations conducted during development,
which offers further rationale for our design choices.

4.1 Design Elements
As illustrated in Figure 4, HandProxy consists of three major components: speech understanding, hand control,
and visualization & feedback. The speech understanding module continuously listens to and processes user input
in a streaming fashion in real-time using Google Speech-to-text API [33]. It segments long speech inputs into
individual commands based on punctuation, and adds them to the command queue. Using GPT-4o [58], the
system then interprets each command and decomposes it into a sequence of instructions in the json format. Once
instructions are available, the hand control module uses the hand pose sequences that was either retrieved from
FPHAB [30] dataset or recorded using LeapMotion and modifies the skeleton data to accommodate movement,

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 3, Article 107. Publication date: September 2025.

HandProxy: Expanding the Affordances of Speech Interfaces in Immersive Environments with a Virtual Proxy Hand • 107:9

rotation, and hand-object interaction. The playback of the hand data is controlled by the hand state manager to
support interaction timing control, and is streamed to the target virtual environment for virtual hand control,
along with additional visualizations and feedback to be overlaid on top of the user’s view. The system components
run in parallel to increase the efficiency and avoid blocking the hand movement and impacting user experience.

The HandProxy system is implemented in Python, with its output streamed to a Unity application via the TCP
connection. The Unity application renders a sample 3D virtual environment that contains interactable objects
and a virtual hand, simulating an immersive application that supports hand gesture input. It overlays visual
feedback specific to HandProxy on top of the immersive environment, as shown in Figure 5. For demonstration
and prototyping purposes, the Unity app runs on a laptop, but can be deployed to other supported platforms (e.g.,
Android on Meta Quest). Demonstrations of the interaction experience on desktop and XR headset setups are
provided in the supplementary video.

4.2 Speech Understanding
The speech understanding module recognizes and interprets the user’s command. It determines whether the
speech command is an interaction command or a random speech, checks if it is ambiguous or interpretable, and
decomposes it into structured, system-interpretable instructions for the hand control module to execute.
For speech recognition, HandProxy uses the Google Speech-to-Text API, which is configured to return inter-

mediate results for real-time streaming recognition. The speech input is segmented into individual sentences,
determined by terminal punctuation on the final results returned from the API. Each sentence is then treated as a
command and is added to the command queue for interpretation.

For command interpretation, HandProxy uses a multi-level approach for command processing. Similar to the
reactive and deliberative layers in robotics [57], the system uses keyword matching and directly responds to high-
priority commands, with LLM-based processing for more complex inputs. Specifically, as soon as intermediate
results are received from the speech recognition service, HandProxy checks predefined keywords and synonyms
related to temporal controls as discussed in section 3. These commands — such as “stop,” “hold,” or “undo” —
are time-sensitive and need to be executed with minimal delay. If a matching keyword is detected, the system
triggers the corresponding temporal control immediately. Otherwise, the system retrieves the earliest available
command from the command queue and processes it using GPT-4o. The model is guided by a structured system
prompt and is provided with a list of supported control categories from section 3, which is listed below:

Your objective is to break down a user command into actionable control components that the system can execute.
Once you receive the command, follow these steps meticulously:
Step 1: Command Fixing
1. Input command is converted from speech, so minor errors may occur. If you notice any, please correct them
and replace the original command with the fixed version.
Step 2: Components Matching
1. Carefully read through the entire command.
2. Imagine you are a person with only your right hand available (currently empty), standing in a wide space,
surrounded by the objects and environment described in the command.
3. With point 2 in mind, align each command part (and necessary actions for execution, e.g., grabbing an
object before moving it) with a corresponding control component listed below. Users may say or describe the
interaction in various ways, the system should match the similar concept together. For example, "chop" and
"cut" should both be matched to "cut", etc.
4. If no components can be matched, proceed DIRECTLY to Step 4.2, skip intermediate steps.
Step 3: Ensuring Correct Order
1. Components should follow the user’s expected execution sequence.
Step 4: Structuring Output
1. Once the components are matched, fill in all fields within each component. ENSURE ALL FIELD VALUES ARE
SELECTED FROM THE PREDEFINED OPTIONS PROVIDED BELOW.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 3, Article 107. Publication date: September 2025.

107:10 • Chen Liang, Yuxuan Liu, Martez Mott, and Anhong Guo

2. Format each component as a JSON object as defined below, then output them sequentially in an array. If no
components are matched, set the value of components to an empty array.

[. . . # a list of available controls and parameters for each component are appended after the prompt]

The LLM is used to (i) correct potential speech recognition errors (e.g., power bottom → power button), as
used in other works like [89], (ii) decompose high-level commands, if any, into executable steps (e.g., put the
cube into the basket → grab the cube, move to the basket, and release), and (iii) parse individual steps as a list
of instructions as json. Also, since people tend to use a surprisingly great variety of words to refer to the same
thing [29], the system prompt instructs the model to generalize beyond exact words provided in the supported
instructions to accommodate diverse ways users may phrase their commands. For example, commands with
similar intent are mapped to the same control action (e.g., “pinch” = “tap index and thumb,” “pink circular fruit”
= “peach”). If a given input is not relevant — meaning it does not appear to be an interaction command — the
model is instructed to ignore it and return an empty list instead of attempting to interpret unrelated speech.
Additionally, user commands are saved within a command list, allowing the system to refer back to previous
inputs when necessary (e.g., resolving references to earlier commands).
This approach ensures that the LLM interprets user commands and maps them to the appropriate hand

interactions, which includes:

• Gesture Control: [“pinch”, “point”, “push”, “grab”, “swipe”, “punch”, “squeeze”, “cut”,
“thumb_up”, “thumb_down”, “open_hand” (i.e., release)]

• Target Control: (i) A list of interactable object names in the virtual environment, their current positions,
and a list of descriptive tags for each object, (ii) supported relative constraints to identify objects: [“below”,
“above”, “to the left of”, “to the right of”, “in front of”, “behind”, “closest”,
“farthest”, “first”, “last”, “on the left”, “in the middle”, “on the right”]

• Spatial Control: (i) translational control: [“up”, “down”, “left”, “right”, “forward”, “backward”],
(ii) positional control: [“on top of”, “under”, “in front of”, “behind”, “to the left of”, “to
the right of”], (iii) rotational control: [“pan left”, “pan right”, “roll left”, “roll right”,
“tilt up”, “tilt down”]

• Temporal Control: [“stop”, “continue”, “faster”, “slower”, “undo_step”, “redo_step”,
“hold”]

At the end, the speech understanding module outputs a json object following this standard format. For example,
given the command “pinch the cube,” the system generates the following instruction:

[{“component_type”: “gesture”, “value”: {“gesture_type”: “pinch”, “object”: “cube”, “is_ambiguous”: False}}]

Here, the system identifies a gesture control action, which specifies a pinch gesture on the cube object. If only
one cube exists in the environment, the is_ambiguous variable is set to False. However, if multiple cubes are
detected, it is set to True, triggering a disambiguation mechanism and corresponding visual feedback in other
modules to prompt the user for clarification.

For more complex commands, the LLM references both the list of supported actions and its general knowledge
to determine the best way to combine supported hand controls to finish the user’s request. For instance, given
the command “peach into the basket,” the system generates multiple sequential steps:

[{“component_type”: “gesture”, “value”: {“gesture_type”: “grab”, “object”: “peach”, “is_ambiguous”: False}},
{“component_type”: “movement”, “value”: {“movement_type”: “translational”, “object”: “basket”, “is_ambiguous”:
False, “position”: “on top of”}}, {“component_type”: “gesture”, “value”: “release”}]

By dynamically generating one or more executable steps, HandProxy lets users issue both low-level direct
commands and high-level intent-based commands, which provides an adaptive and natural interaction experience.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 3, Article 107. Publication date: September 2025.

HandProxy: Expanding the Affordances of Speech Interfaces in Immersive Environments with a Virtual Proxy Hand • 107:11

4.3 Hand Control
The hand control module executes instructions from the json to generate a sequence of hand pose data to control
the virtual hand. It maintains a hand state manager, which tracks key hand properties such as the current hand
pose, wrist position, playback status (e.g., whether an action is in progress), and the sequence of upcoming hand
poses. When a new instruction arrives, the hand control module activates the relevant control sub-modules
discussed in section 3 to update the hand pose data. Next, we describe each control module in detail.

4.3.1 Gesture Control. The gesture control module generates a sequence of hand pose data to represent the
required gesture. These poses are retrieved from the FPHAB [30] dataset or captured using LeapMotion, but
is extensible to gesture datasets that include the 2.5D coordinates (x_ratio, y_ratio, z_depth) of 21 hand
joints. The gestures supported in the current system includes grab, pinch, point, push, swipe, cut, punch, squeeze,
thumb up/down, and open hand (release).
To enrich data with additional gesture information, each gesture is manually annotated with details about

the gesture’s object dependency and different gesture stages [52] that could benefit the gesture control. The full
metadata format can be found in Appendix A, and some key attributes include:

(1) Is static: Specifies whether the gesture is static or dynamic.
(2) Interacting frame: Identifies the frame at which the hand fully interacts with an object (if applicable).
(3) Interacting joint: Specifies the joint primarily involved in the interaction (e.g., the index fingertip for

a pointing gesture). If unspecified, the wrist is used by default. This information helps hand movement
calculations during object interactions to better match the expected hand behavior.

(4) Segments: Defines the start and end frames for different gesture phases, including preparation, stroke, and
retraction. This segmentation supports additional features such as gesture holding.

Combining all the data together, when given a gesture command, the module loads the sequence of hand pose
data from the gesture database. Downstream modules can use the pose data at each frame as an 21 × 3 matrix,
modify it, and send it to the virtual environment.

4.3.2 Target Control. The target control module handles object-dependent hand interactions by identifying and
aligning the virtual hand with the intended target. It first resolves the target object using positional constraints,
such as “below,” “above,” “to the left of,” “to the right of,” “in front of,” “behind,” “closest,” “farthest,” “first,” “last,”
“on the left,” “in the middle,” and “on the right.” These constraints are resolved by retrieving the current positions
of all virtual objects through a query to Unity application and calculating their relative spatial relationships.
Once the target object has been determined, the module calculates a path to move the hand from its current

position to the target object. It first determines the total distance to move, calculates the movement step size by
dividing the total distance by the number of frames for this gesture, and cumulatively add step sizes to original
hand pose data for all the following gesture frames. This calculation also accounts for the interacting joint (as
discussed in Gesture Control) to ensure alignment. For example, if the command is to point at a button, the
system uses the interacting joint defined in the gesture metadata to set the index fingertip to align with the center
of the button when calculating the movement path. By dynamically modifying the original hand pose sequence,
the target control module ensures that gestures interact with objects in the correct fashion.

4.3.3 Spatial Control. The spatial control module manages the movement and rotation of the virtual hand.
It supports translational movements in six directions: “up,” “down,” “left,” “right,” “forward,” and “backward.”
Additionally, it enables rotational adjustments, including “pan left,” “pan right,” “roll left,” “roll right,” “tilt up,”
and “tilt down.” Specifically, translational movements are applied by adding a speed vector to the hand pose
data, while rotational adjustments are calculated by rotating the joint coordinates along the estimated hand axis

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 3, Article 107. Publication date: September 2025.

107:12 • Chen Liang, Yuxuan Liu, Martez Mott, and Anhong Guo

using the vector of middle metacarpophalangeal joint (MCP) to index MCP, middle MCP to wrist, and the vector
perpendicular to these two vectors.
Similar to target control, movement commands can also reference target objects along with relative position

constraints such as “on top of,” “under,” “in front of,” “behind,” “to the left of,” and “to the right of.” In such
cases, the system computes the movement path similarly to object interactions but applies an offset to reach the
specified position relative to the target object.

4.3.4 Temporal Control. Temporal control specifies the timing and state changes of hand interaction, including
“stop”, “continue”, “faster”, “slower”, “undo_step”, “redo_step”, and “hold.” Hand pose data from earlier stages is
sent to the hand state manager, which keeps a playback speed (frames per second, fps) and playback state (stop,
play) that can be adjusted based on temporal control commands. For the hold command, specifically for holding
a specific interacting gesture (e.g., as in grab and hold the cube), the temporal control adds a key frame at the
interacting frame (as defined in gesture control) and pauses the playback at that frame to hold the gesture.

Additionally, the hand state manager maintains a history of final hand poses after each command. This enables
“undo” and “redo” functionality, allowing users to revert to previous hand states or redo an action if needed. If an
error occurs, the system can quickly restore the last hand state, providing a flexible interaction experience.
At the end, the hand control module outputs the hand pose for the current frame as a list of 63 numbers (21

joints × (x, y, z)), and sends it to the Unity app to control the virtual hand.

4.4 Visualization and Feedback
To enhance system transparency and clarify potential ambiguities in user commands, HandProxy incorporates
various visual feedback mechanisms that are overlaid on the user’s viewport. In the prototype Unity app,
visualization is implemented as a canvas overlaid on the main camera view. Each visualization is triggered when
it receives the command from the HandProxy. Figure 5 shows examples of each feedback type. To ensure users
understand how their commands are processed, the system displays both the recognized (full input) and active
(which part of the input is being executed) commands. If a command is irrelevant (e.g., not a valid hand interaction)
or cannot be interpreted, the system highlights an error message in the recognized input and prompts the user to
rephrase the command. For cases where the user refers to an ambiguous object (i.e., multiple similar objects exist
in the environment), the system provides disambiguation hints by overlaying numbered labels on each possible
target, allowing users to specify the object by its assigned number. To further increase transparency in hand
movement execution, the system visualizes the movement path. As shown in Figure 5d, a sequence of arrows
appears along the trajectory, indicating the direction in which the hand is moving. If the command involves
multiple steps, the full movement sequence is previewed to give users an overview of how the hand will execute
the task. These visualizations provide users with greater visibility of the system to bridge the gulf of evaluation,
improving both command accuracy and interaction efficiency while reducing errors and misinterpretations.

4.5 System Latency
The system latency is composed of two main components: speech recognition and processing latency, and
command processing latency. Speech recognition and processing latency measures the time from just before an
audio chunk is sent via an API request, to when the recognized text is split into commands. Based on 100 requests,
the average latency for this process was 0.18 seconds, with a standard deviation of 0.07s. The command processing
time is the time it takes for the system to interpret the command and generate a sequence of corresponding hand
pose keypoints. We measured such latency for both commands that matched high-priority keywords, and those
processed by LLMs. Through a test of 100 commands that matched the high priority keywords, all commands
were executed within 0.001 seconds. Through a test of 100 requests that included both simple (e.g., requires one

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 3, Article 107. Publication date: September 2025.

HandProxy: Expanding the Affordances of Speech Interfaces in Immersive Environments with a Virtual Proxy Hand • 107:13

Fig. 5. Examples of system feedback: (a) an overlay streaming speech recognition results and currently executing command,
(b) an error message indicating the command is ambiguous, prompting the user to try again, (c) a disambiguation overlay
that labels ambiguous objects, where the user can clarify the desired one by saying its number, and (d) a preview of the hand
movement path, shown as a list of arrows pointing towards the destination.

step), complex (e.g., needs to be decomposed into multiple steps), and irrelevant commands (e.g., not a valid
interaction instruction), the average response time was 1.39 seconds, with an standard deviation of 0.81s.

4.6 Adapting to New Gestures and Environments
HandProxy can be extended with additional gestures. It accepts hand pose data in the format of a sequence
of 21 keypoint coordinates (x, y, z) and a gesture metadata in the format shown in Appendix A. The widely
used 21-joint format enables data from various sources to be easily integrated, such as hand pose datasets [30],
recorded data (e.g., from LeapMotion or MediaPipe), and hand pose generation models [22]. Given this, HandProxy
automatically normalizes the data and adjusts the value based on the instruction. Existing built-in controls, such
as target, spatial, and temporal controls and other gestures, are still compatible with the newly added gestures.
To adapt to new environments, HandProxy requires the name and optionally descriptive tags of interactable

objects, similar to the accessibility metadata required for interactive UI element on mobile [32] or web interfaces
(e.g., DOM tree [55]). The GPT prompt is dynamically updated with the object information to process new
commands. Note that due to limited direct access of the hand input on XR systems, in our current implementation,
the virtual hand is added as an object within the application. However, we envision that with system-level support,
HandProxy can directly control the virtual hand input of the operating system and retrieve interactable object
information to achieve a more unified, cross-application control.

4.7 Design Iterations
The HandProxy system was iteratively designed and developed through pilot studies with 13 participants recruited
from the student group at the authors’ institution. Participants were asked to use HandProxy to perform object
selection, manipulation, and transformation tasks in a test virtual environment, and is then interviewed for their
experiences and potential improvement suggestions. Here, we summarize key aspects from these iterations, with
the goal of providing additional rationale behind our design choices and insights into user preferences.

4.7.1 Enhancing the Speech Interface. The speech interface is a core component of HandProxy. In our initial design,
we followed a traditional turn-based interaction approach, similar to off-the-shelf speech interfaces [7], where
users issue a command, wait for execution, and then issue the next command. However, our pilot studies revealed

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 3, Article 107. Publication date: September 2025.

107:14 • Chen Liang, Yuxuan Liu, Martez Mott, and Anhong Guo

that this approach was inefficient for hand control. Many participants preferred to issue multiple commands
continuously, describing an entire sequence of actions in one go. The forced pauses between commands disrupted
the interaction flow, making it less natural. Additionally, it was difficult for users to issue commands to override
current executions, such as stop or undo, as users had to wait for the previous command to finish before issuing
a correction. As a result, we redesigned the speech interface to support continuous input, allowing simultaneous
speech recognition and action execution. This change also motivated the parallelized system architecture, where
each module runs in a separate thread, ensuring that speech processing, command interpretation, and execution
run without blocking other processes.

Additionally, we observed variations in user preferences for the level of detail in commands. Some participants
preferred step-by-step instructions, such as “move left,” “move up,” “grab,” while others issued higher-level
commands, such as “put the cube into the basket,” expecting the system to infer intermediate steps. This motivates
the choice of integrating LLMs (GPT-4o), instead of rule-based systems, into the speech interface to support
flexible and diverse speech patterns and leverage their reasoning capabilities to interpret user intent dynamically.

4.7.2 Integrating Contextual Information. Throughout our iterations, we observed that participants naturally
used descriptive references to identify target objects, including shape, appearance, and relative location. Examples
include “green ball” or “the object next to the button.” This demonstrated the need for contextual understanding,
which motivated our decision to incorporate object metadata into the system.

While advanced vision models could enhance contextual understanding, we drew inspiration from accessibility
metadata in 2D user interfaces and implemented a metadata structure for virtual objects. Each object is assigned
a set of descriptive tags, allowing the system to recognize and differentiate objects based on user descriptions.
Additionally, many object references rely on common knowledge (e.g., “a green fruit with stripes” is likely a
watermelon). To enhance generalizability, we integrated LLMs to allow HandProxy to reason beyond predefined
metadata and infer likely object references based on common knowledge and context.

4.7.3 Improving System Transparency. Speech recognition errors are a common challenge, and pilot study users
expressed the need for visibility into how their commands were interpreted. This feedback motivated several
transparency-focused design choices, including showing the recognized results and visualizing the path of the
expected hand movement. These features ensure that users can intervene in real-time when error happens using
commands like stop or redo, which ultimately improves interaction reliability and usability.

5 User Study
We conducted a user study with 20 participants to evaluate the HandProxy system and gather insights on usage
patterns and feedback. Specifically, we aim to answer the following research questions:
RQ1. To what extent can participants complete a wide variety of tasks using HandProxy?
RQ2. How effectively can the system interpret the diverse ways in which users issue commands?
RQ3. What strategies, preferences, and methods do participants use for specifying intent?
RQ4. How do participants experience and perceive HandProxy?
RQ5. What other expectations do participants have for the system?

5.1 Participants
We recruited 20 participants (9 female, 11 male, age 18-31) from the student population at our institution. Based
on a self-reported survey, 3 participants had no prior experience in immersive environments (e.g., VR/AR), 13
were beginners, and 4 were intermediate users. For experience with hand-gesture-controlled interfaces (e.g.,
XR headset like Meta Quest or hand tracking cameras like Kinect), 5 participants reported no experience, 12
were beginners, and 3 were intermediate users. Regarding speech interfaces, 1 participant had no experience, 5

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 3, Article 107. Publication date: September 2025.

HandProxy: Expanding the Affordances of Speech Interfaces in Immersive Environments with a Virtual Proxy Hand • 107:15

a

b

d

c

e

Fig. 6. Virtual environment for the user study (a), with different interactable 3D objects and UI widgets. Participants were
asked to perform various hand interactions by commanding the virtual hand in the environment. Task examples include but
not limited to twist knob (b), grab fruit (c), push cube (d), and pinch to resize window (e).

were beginners, 12 were intermediate users, and 2 were experts. Examples of speech systems included virtual
assistants like Siri or Alexa, ChatGPT voice mode, and speech input on TV remotes. The study was approved by
the IRB, and participants received $30 gift cards as compensation.

5.2 Apparatus and Procedure
The study sessions were held in a small meeting room. Participants sat in front of a TV connected to a workstation
laptop with i9-12900H CPU, which runs the 3D virtual environment in Unity. This setup is to provide an equivalent
experience for all participants. As shown in Figure 6, the virtual environment in Unity is designed to have different
3D objects and UI widgets, supporting a variety of interaction tasks. The interactions are triggered only by
collision or gesture detection of the virtual hand. The Unity app does not provide dedicated API to trigger
interaction. Each study session took 2 hours.

Overview (10 minutes): participants were broadly introduced to the project and the system setup, and were
asked to fill out the pre-survey on their prior experiences.
Study tasks (60 minutes): for each task, participants first watched a video clip demonstrating a virtual

hand performing the intended hand interaction. They were then instructed to replicate the interaction using
speech through HandProxy. To minimize bias toward specific commands, no guidance was provided beyond the
video demonstration, except when participants required clarification or assistance. For mid-air gesture tasks,
participants were asked to complete the task directly. For other tasks, interactions were conducted with three
different objects. During the initial practice session, participants used the first object to explore the system’s
capabilities and limitations by experimenting with different commands. In the subsequent test session, they
performed the same interaction on two additional objects, aiming to complete the task as accurately as possible.
The tasks below are selected based on common types of interaction tasks in the virtual environment [53], including
selection, manipulation, and transformation.
(1) Warm-up with mid-air gestures: participants were asked to use speech to reproduce common mid-air

gestures on commercial XR devices [3, 6] as a warm up, which included pinch, swipe left, double pinch, and
thumb up. They served to familiarize participants with the system and the basic gestures, and to prepare
and on-board them for subsequent tasks.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 3, Article 107. Publication date: September 2025.

107:16 • Chen Liang, Yuxuan Liu, Martez Mott, and Anhong Guo

(2) Hand interactions: participants were asked to perform a wide range of interaction tasks for virtual environ-
ment [53], including object selection, manipulation, transformation. The tasks included object dependent
gestures (grab {apple, peach, blue cube}, press {confirm, minimize, power} button, pinch {blue cube, vol-
ume slider, resize button}, push {confirm, like, power}) and disambiguation (grab the {left, middle, right}
watermelon among the 3 watermelons).

(3) Movement and rotation control: this included hand movement (move {left, up, forward}), object movement
(put the {apple, peach, blue cube} into the basket, rotation (turn the brightness knob {clockwise, counter-
clockwise}). Participants were also asked to perform tasks that required timing control. This included grab
the {apple, peach, cube} and move to the left according to a light signal (green = move, red = stop), and to
press and hold the {power, like, confirm} button.

(4) Complex tasks: for these tasks participants were only shown the image of the final outcome, without
demonstrating the steps to accomplish it. It was up to the participants to decide what and how many
steps to take to finish the task. These include tasks to make the window wider, put apple, peach and first
watermelon into the basket, and maximize the volume.

Free exploration (10 minutes): participants had the opportunity to freely explore the environment using
commands of their choice to investigate the system’s capabilities and limitations. A Likert scale questionnaire on
system usability was given at the end.
Semi-structured interview (40 minutes): participants were interviewed about system performance, user

experience, interaction strategies, desired features, and suggested improvements.

5.3 Methodology and Procedure of Data Collection and Analysis
To support quantitative analysis, the system logged the recognized text, decomposed json output, executed hand
controls, and system feedback (e.g., visualization, error messages) for each of the command user gave during
the study. For commands that were incorrectly recognized, the researcher noted down the original command
for analysis. For commands that were incorrectly interpreted or executed, the researcher marked the specific
task and used the system log for further analysis. The command inference time was also recorded to evaluate
the system responsiveness. To focus on task-related input, we excluded user input that were not relevant to the
task they were asked to perform. This could be due to misunderstanding of the task goal, or accidental misspoke
commands. At the end, a questionnaire with Likert scale questions were used to evaluate the system usability.
For qualitative analysis, we audio-recorded semi-structured interviews with participants’ permission, and

conducted a thematic analysis [19] on the transcripts. The primary researcher generated the initial codes and
themes, and collectively discussed and examined the results with the research team to reach consensus.

6 User Study Results
Below we present the study results. Unless otherwise noted, the findings are based on data from the test sessions.

6.1 RQ1: To what extent can participants complete a wide variety of tasks using HandProxy?
Participants successfully completed a wide variety of tasks using HandProxy, with an 100% task com-
pletion rate on tasks conducted in the test sessions. Among the 781 commands participants issued across all
test sessions, the system correctly executed 717 of them, resulting in an overall accuracy of 91.8%. The median
command execution accuracy per participant is 92.5%, with an IQR of 89.3% to 95.5%. On average, the system
took 1.66 seconds to interpret the recognized speech command, with an standard deviation of 0.94 seconds.
After errors happened, participants were able to recover from errors by using alternative commands

to complete the task. Multiple techniques were reported for error recovery, including rephrasing (13), repeating
(3), and splitting into smaller steps (3). Across all commands in the test sessions, an average of 1.09 attempts (std

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 3, Article 107. Publication date: September 2025.

HandProxy: Expanding the Affordances of Speech Interfaces in Immersive Environments with a Virtual Proxy Hand • 107:17

0.33) were needed for a command to succeed. Specifically, 85.5% of error commands were resolved with 1 more
attempt, 12.7% took 2 more attempts, and 1.8% took 3 more attempts, showing that most errors were corrected
with one alternative attempt.

6.2 RQ2: How effectively can the system interpret the diverse ways in which users issue commands?
HandProxy effectively handled users’ diverse ways of phrasing commands, including less common
ones. To identify unique commands per task, we lemmatized and removed stopwords from each command used
by participants during test sessions. Figure 7 shows the histogram and normalized entropy of unique commands
participants used to complete study tasks. The normalized entropy quantifies the variation in the distribution of
commands with a value from 0 (all attempts were dominated by a single command) to 1 (each attempt corresponds
to a unique command). Both the histogram and normalized entropy shows the diversity of commands participants
used. Specifically, tasks were not dominated by just one command but were distributed across various commands,
and the system was able to interpret most commands, including those used less frequently.
During practice sessions, participants generated an average of 32 unique commands per task. The system

successfully interpreted command variations, including different verbs (e.g., {grab, pick up, fetch, hold} the peach),
object descriptions (e.g., peach, pink fruit), spatial references (e.g., first fruit, second watermelon from the left),
and sentence structures (e.g., can you use the minimize button, peach inside the basket). Moreover, the system
demonstrated the ability to interpret and decompose high-level commands and generalize beyond literal meanings.
For example, it interpreted “increase the brightness” as (i) grab the brightness knob and (ii) twist right. In the
example of “fold the window,” the system was able to connect fold to minimize, and press the minimize button.

After practice sessions, as shown in Figure 7, participants continued to use diverse commands and phrasings
rather than relying solely on the most straightforward command, and the system effectively handled this variability.
Given that participants were free to use their own words without predefined commands or formats, these results
highlight HandProxy’s capability to interpret flexible and varied input.

To better understand HandProxy’s limitation, we analyzed the retried commands in the test sessions. In total,
the system failed to execute or incorrectly executed 64 commands. Among them, 40 valid commands were
categorized as invalid, and the system prompted users to try again and did not perform any action. Most were
due to challenges for the LLM in identifying target objects (n=26), including synonyms (9), visual descriptions (6),
object functionality (6), positional constraints (3), or other system errors (2). For example, participants described
the power button as “the white and round button on the right side of the screen” (P1), the basket as “the brown
object” (P16), or directly described the visual content within a widget, such as describing the window as “the
dog photo” (P2). In other cases, participants referred to objects with synonyms or their expected functionality,
such as describing the power button as “start on off button” (P10), or the heart button as “favorite button” (P16).
While in many cases the system could infer beyond the object metadata, it struggled to account for the possible
descriptions described above. This highlights the need for a more comprehensive understanding of the objects
and environment to support more diverse descriptive commands, which we will discuss in future work.

Apart from invalid commands with no action, the system incorrectly executed 24 valid commands. Among these,
3 were due to speech recognition errors, while 18 resulted from misinterpreted hand interactions. These include
ambiguous commands (6), incorrect command decomposition (5), incorrect gesture parsing (4), or performed on
the wrong target objects (3). Some commands had multiple possible interpretations, where context could have
clarified the intended meaning. For instance, when P6 said, “turn the volume slider to maximum,” the participant
expected the slider to move to the top. However, the LLM interpreted the word “turn” literally and the system
performed a “twist right” gesture instead. Errors also occurred when participants combined multiple commands
into one sentence. For example, P20 said, “pinch the resize button and pull it to the right” to make a window
wider, expecting a continuous pinch-and-move gesture. Instead, the LLM parsed “pull” as a separate command,

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 3, Article 107. Publication date: September 2025.

107:18 • Chen Liang, Yuxuan Liu, Martez Mott, and Anhong Guo

Rate HN Distribution Successful Not Successful

9 100% 0.83

13 100% 0.88

11 95% 0.85

16 83% 0.91

8 91% 0.71

9 91% 0.8

12 91% 0.89

14 87% 0.81

13 95% 0.92

16 91% 0.96

13 100% 0.9

13 80% 0.81

14 100% 0.93

16 95% 0.91

17 95% 0.96

18 100% 0.99

19 100% 0.99

22 91% 1

14 100% 0.94

13 100% 0.84

Move {apple,
peach, cube}to the

left following
traffic light signal

Press and hold the
{power, like,

confirm} button

Rotate the
brightness knob

{clockwise,
counterclockwise}

ID

1

2

3

4

10

5

6

7

8

9

Task Task Image

- grab the second watermelon
- grab the watermelon in the middle
- grab the watermelon 2
- pick up the second watermelon
- grab the watermelon, second from the left

- grab the second green object
- hold the green ball in the middle of the table
- hold the green watermelon in the middle of the table
- grab the watermelon to the right of the first watermelon

- move left
- move hand leftward
- move your hand from right to the left
- push your hand to the left
- slide the hand from right to left

- sweep your hand out to the left
- move the hand across the screen
- swipe the hand from right to left
- move your hand across the room

Test Sessions Example Commands

Grab the {peach,
apple, cube}

Pinch the {resize
button, blue cube,

volume slider}

Press the
{minimize,

confirm, power}
button

Push the {confirm,
like, power} button

Grab the
watermelon {in the
middle, on the left,

on the right}

Move hand to the
{left, up, forward}

Put the {apple,
peach, blue cube}
into the basket

- point and push the power button
- push the power button and keep your hand on it
- point and press the power button

- press the confirm button
- palm that confirm button
- hit the confirm button
- press confirm button with palm
- touch confirm button

- drop the peach in the basket
- grab the peach and put it in the basket
- move the peach in the basket
- pick up peach; move hand up; move hand to the
left; release
- peach inside the basket

- peach in the basket

- pick up the peach
- grab the first fruit
- grab the pink fruit
- put your hand to the peach and hold it
- go fetch the peach

- grab the smallest fruit
- grab the fifth fruit from the right
- put your hand on the peach
- pick up the first fruit at the center of the table
- grab the third item from the left

- minimize the screen
- click the minimize button
- fold the image of the dog
- press the yellow button that says minimize
- can you use the minimize button

- click on the up arrow
- click on the upper right corner of the window
- point to the yellow arrow
- I do not want to see the dog
- push the minimize button

- pinch resize
- do a pinch gesture at the corner of the resize
- pinch on the resize
- pinch on the resize button on the screen
- do a pinch gesture at the resize button

- resize
- pinch the bottom right corner of the screen
- use the resize button
- pick up resize
- grab the resize button

- push confirm
- press the confirm button
- push the confirm button with your palm
- slap the confirm button
- move to the confirm button and push it

- point the power button and keep your finger
there
- keep pointing to the power button
- long press power button
- hold the power button- apply pressure to the
power button

- move the apple to the left; stop; move left
- grab the apple; go to the left; stop; go
- hold the apple; move left to the screen; stop; go
- pick the apple and move your hand in the left
direction; stop; move left
- pick up the apple and move it to the left; stop; go

- move the apple to the left when the light is green
- pick up the apple and move left when the light is green and
stop moving when the light is yellow or red
- move the apple outside the screen
- move apple to the left according to the traffic light
- move left when the circle on the top of the screen is green

- increase the brightness
- turn the brightness knob to the right
- twist brightness to the right
- make the photo brighter using the brightness
button
- screw the brightness button rightward

- turn up the brightness button

Fig. 7. Command diversity in test sessions: Each task was repeated on three objects — one for practice and two for test
sessions (top row: second object, bottom row: third object). We report the number of unique command phrasings (#),
execution accuracy (Rate), normalized entropy (𝐻𝑁), and a histogram showing the distribution of unique phrasings, sorted
by frequency. We color-coded the successful attempts as blue and unsuccessful attempts as red to illustrate the distribution
of correct/incorrect commands. Finally, we provide examples of successful and unsuccessful participant commands.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 3, Article 107. Publication date: September 2025.

HandProxy: Expanding the Affordances of Speech Interfaces in Immersive Environments with a Virtual Proxy Hand • 107:19

initiated a “grab” gesture that canceled the pinch and caused an unexpected action. The system identified the
wrong object from some other commands. For example, P5 said “pick up the first watermelon on the right” to
refer to the rightmost watermelon, but the system interpreted it as the first watermelon overall (left to right).
Nonetheless, participants were able to complete 100% of the tasks and recover from errors using alternative

commands, with an average of 1.09 attempts (std 0.33) per command.

6.3 RQ3: What strategies, preferences, and methods do participants use for specifying intent?
Participants demonstrated diverse strategies and preferences while prompting the system. During
practice sessions, the average command length was 5.25 words (std: 2.72, median: 5). In test sessions, this was
slightly lower, with an average of 4.73 words (std: 2.32, median: 4). For free exploration sessions – where users
were not restricted to specific tasks – the average command length increased to 5.95 words (std: 3.32, median: 5).
Participants who preferred more detailed commands found it easier to “specify what I want” (P2) or believed it
would “help the system understand” their intent more accurately (P7). For example, to grab the peach, P15 used
the command, “can you grab the peach and hold it in your hand?” In the interviews, 14 out of 20 participants
favored shorter commands for their simplicity, clarity, and lower risk of errors. As P16 mentioned, “The longer it
is, the more words I could say wrong and it could misinterpret.”

However, having shorter commands does not necessarily mean commands are always simple and low-level. In
fact, participants used a mix of high-level and direct commands, such as “maximize the volume” (high-level) or
“pinch the volume slider” followed by “pull up” (direct). For example, P9 mentioned that “I just wanted to tell the
system what I want to do, and let the system figure out what gestures to do,” while others mentioned that using
detailed control would be “more accurate” (P8), especially in precise tasks (P11) or those that need fine-grained
controls (P6). Participants also reported the need to switch to a new mental model while using the system. This
led some participants to use more descriptive ways of specifying their interaction intentions, such as “touch your
index finger and thumb” to describe the pinch gesture (P13). As P17 said,

“A lot of the motions that you intuitively perform didn’t come to me in words very easily. So my strategy was to
describe exactly what the hand was doing until I’d sometimes realize, ‘Oh, that’s how it should be [described]’ ”

6.4 RQ4: How do participants experience and perceive HandProxy?
We evaluated system usability using 7-point Likert scale questions, covering system effectiveness, interaction
variety, ease of use, responsiveness, learnability, consistency, and user confidence. The questions are based on the
System Usability Scale [20], with modifications to better align with the specific tasks in this user study. The Likert
scale questions were administered three times at different stages to identify potential learning effects. However,
no significant differences were found across the three sets of responses. Therefore, we report the results from the
final administration that were conducted after all tasks were completed, as they provide the most comprehensive
reflection of participants’ overall experience with the system.

Overall, participants found HandProxy effective for hand interactions (avg. 5.5, std. 0.82), can support various
interaction gestures (average 5.75, std. 0.91), easy to use (average 5.7, std. 1.12), and participants were generally
confident in using it (average 5.3, std. 1.08). Regarding system responsiveness, participants gave an average
of 5.15 (std. 1.18). While participants appreciated the fast timing controls (e.g., stop, continue, undo) (e.g., P6),
overall responsiveness across different types of commands could be improved for smoother interaction (P2, P8).
HandProxy was also seen as intuitive and easy to learn (avg. 5.7, std. 1.41), especially given that the study was
intentionally designed to have only a very brief on-boarding session. As P3 mentioned, “a few minutes of play
and you should be ready.” However, P15 highlighted challenges for users unfamiliar with AR/VR, often relying
on long, descriptive commands and struggling with terminology. Both P15 and P11 suggested that a tutorial with
example commands, words, and objects would make the system more intuitive for beginners.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 3, Article 107. Publication date: September 2025.

107:20 • Chen Liang, Yuxuan Liu, Martez Mott, and Anhong Guo

Fig. 8. Final Likert scale responses of system usability.

Additionally, participants valued HandProxy’s ability to handle high-level commands (P1, P2, P8, P11, P19);
robustness to certain ambiguity in the command (P5, P10, P11); consistency on the same task (P7, P15); its memory
capability (P19); and its ability to take continuous speech input and perform actions on the go (P7). For example,
P1 mentioned that HandProxy is able to directly execute her high-level commands step by step, “even though I
haven’t told the system how to perform the actual task.”
Interestingly, we found that participants had different perceptions of the virtual proxy hand – either

as an interaction tool, an agent, or a part of their body. These not only impacted the way they used it, but
also their expectations about the system’s capabilities. Participants who perceived HandProxy as a tool treated
the virtual hand more like a cursor, and cared more about what it could achieve than how realistic the interaction
was, and in some cases, suggested that it should go beyond what a real hand can do. As P11 mentioned,
“I don’t know if the system can make the hand more abstract. For example, it could hold many things at a time.
It may not need to be limited to the physical world, allowing for actions beyond what we can do in real life.”

This perception of HandProxy as a tool also influenced how participants talked to the system. For example,
P7 used simple, direct, “non-human speech” to complete tasks, “just like other voice controls that’s relatively
old.” This perception may have led some participants to underestimate the system’s ability to handle high-level,
complex input. As P14 said, “I thought it only do steps, but later found it does whole tasks and I will do that.”
However, participants who perceived the system as an agent would prefer to treat it as an assistant or “you,”

expecting it to understand high-level commands, or even answer questions related to the environment. For
example, participants mentioned that talking to this system is similar to “talk[ing] normally and intuitively like
you would to a person” (P2). When there is confusion, participants may expect to get answers from the system.
For example, P18 hoped the system could help him identify objects when he forgot their names: “for example, I
could say, What’s that green-striped object? and it could respond, It’s a watermelon.”
Additionally, some participants treated the virtual hand as an extension of their body that just “behaves like

my arm” (P12), which could enhance immersion in the virtual environment. P13 said,
“Essentially, you want to immerse your hand into this [...] virtual environment. It’s about bridging the gap
between you and the virtual space, allowing direct interaction with what’s inside, like in Minecraft or other
virtual worlds. You’d want to ‘put your hand in’ and interact with objects or perform tasks as if you were
physically present in that environment.”

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 3, Article 107. Publication date: September 2025.

HandProxy: Expanding the Affordances of Speech Interfaces in Immersive Environments with a Virtual Proxy Hand • 107:21

6.5 RQ5: What other expectations do participants have for the system?
In the free exploration session, many participants tried commands requiring multimodal understanding of the
environment, context, and how different objects are related to each other. For example, P18 wanted to say “like the
dog” to press the heart button on top of the image viewer window. This expectation of environment understanding
also extends to how the physics work in the virtual environment, such as “throw the apple to the dog” and “catch
the apple right before it hits the table.” Commands based on visual descriptions were also used. As P19 mentioned,
“For example, if I forgot the name of an object, like a watermelon, and describe it as a ‘green-striped round
object,’ I’d expect it to recognize the object. In real life, there are moments when you can’t recall names, so being
able to describe objects and have the system understand would be helpful.”
Participants also tried additional gestures that the system did not yet directly support, such as roll, throw,

flip, wipe, and detailed finger controls. While there was no direct match to these gestures, HandProxy still tried
to utilize existing gestures to reproduce the command to its best. For example, the system performed a grab
and rotate to “flip a basket.” In addition, participants also suggested other hand controls that could be useful,
including bimanual control (P1, P2, P13), supporting more precise, affordance-dependent object interaction (P2,
e.g., grab the basket handle/side), and detailed individual finger controls (P5). Additionally, participants would
like the system to understand object states and conditions in the environment. For example, P20 tried “if the
photo has been resized, press the confirm button,” This also includes monitoring the state of the object while
being manipulated by the virtual hand. For example, P13 mentioned that, “There was one time when it was
trying to move the apple but didn’t realize it no longer had the apple in its hand,” if the system was aware of the
hand state, it could automatically correct this error. These require understanding and monitoring the object state
to relieve users from “monitoring conditions constantly.” (P19) Participants also emphasized the importance of
additional feedback to help users identify and recover from errors. For example, P6 recommended underlining
the parts in user’s command that are confusing or uninterpretable, enabling users to rephrase their input more
effectively in subsequent attempts. P1 suggested having the system predict and suggest possible next moves
after the command, such as showing all afforded hand interactions once the user grabbed an object. Additionally,
participants noted that improving the speech recognition system and reducing overall latency could enhance the
system’s usability. Current limitations and possible extentions on HandProxy are further discussed in section 7.

7 Discussion and Future Work
Here, we expand on our key findings and discuss their implications for future work, including handling ambiguity,
system transparency, supporting bimanual interaction, and creating a unified accessibility API for hand interaction.

7.1 Handling Ambiguity in Interaction Commands
Ambiguity is inherently a part of the natural language, as certain commands could be interpreted in different
ways. Addressing this challenge requires understanding the user’s true intentions. Based on observations from
the user study, two key questions arise: (i) what additional information can be leveraged to resolve ambiguity,
and (ii) how should we balance the system’s ability to disambiguate and requesting clarifications from users.
During the user study, the commands that were considered “ambiguous” by the system were often due to

insufficient understanding of the environment and the target objects, including visual features, complex spatial
referencing, and object affordance. The current disambiguation design is mostly focusing on disambiguating
duplicate objects. However, as discovered in the user study, additional ambiguity could come from the use
of synonyms, or commands that have multiple interpretations. In cases of ambiguity, the system sometimes
took initiatives and filled in the necessary information. While this worked in some cases, it inevitably caused
unexpected behavior (e.g., interpreting “turn the volume slider to maximum” as rotate volume knob to the right,
rather than moving up). This highlights a design challenge that even with additional information about the

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 3, Article 107. Publication date: September 2025.

107:22 • Chen Liang, Yuxuan Liu, Martez Mott, and Anhong Guo

Fig. 9. Spectrum of command granularity, with an estimated preferred range highlighted on the spectrum.

environment, it is important to determine what can and should be automatically inferred by the system, and
what should be prompted to users for clarification. An avenue for future work is to investigate how the system
should balance automated inference and user clarification to consider both accuracy and user effort.

7.2 Supporting Multiple Levels of Interaction Control
Hand interaction commands can vary in granularity along the spectrum shown in Figure 9, with trade-offs in
gesture reproducibility, ambiguity, user workload, and system capability. At the high-granularity end of the
spectrum, users have full, precise control of the hand. This allows users to reproduce almost any hand gesture and
even fine-tune or customize gestures. While such commands are less ambiguous, they impose a higher cognitive
and physical workload on users due to the detailed input required. Conversely, at the low-granularity end of the
spectrum, users can issue abstract, high-level interaction goals, leaving the system to determine how and what to
do to achieve the goal. While this reduces user effort and simplifies command input, it comes with the trade-offs
of reduced precise control, increased ambiguity, and a greater demand on the system’s interpretation capabilities.
To design effective and efficient speech to hand controls, it is important to define an appropriate range of

supported commands that balances granularity and usability. We observed and estimated a preferred range for
hand controls from our study, illustrated in Figure 9. The preferred range skews toward the low-granularity
end of the spectrum, with spacings on both left and right. The left end of the spectrum, although having
more hand control possibilities, was not included because of the control complexity. Although participants
preferred high-level commands, they may require significant system intelligence, and would likely introduce
unnecessary ambiguity. These initial findings provide possible considerations for designing speech interfaces for
hand interaction controls. However, further studies are needed to refine our understanding of the optimal level of
command granularity and its impact on usability.

7.3 Improving Transparency and Gesture Discoverability
During the user study, participants often struggled to identify the specific part of their commands caused issues
when errors occurred. We believe the feedback system could be improved by providing more details about how
the system interprets commands, and should highlight the ambiguous parts and how the system interpreted them.
These could be achieved through a better-designed text feedback of the recognized command, such as to color-
code the words in the command by the level of ambiguity and highlight the parts that could not be interpreted.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 3, Article 107. Publication date: September 2025.

HandProxy: Expanding the Affordances of Speech Interfaces in Immersive Environments with a Virtual Proxy Hand • 107:23

Without overwhelm users with excessive feedback, such improvements could enhance the transparency of the
system, help users effectively refine their inputs and improve their overall experience.
In addition to addressing errors, the interactions’ discoverability remains an area for improvement. While

flexible speech interfaces alleviate the challenge of knowing exactly what to say, participants may still struggle to
identify the possible affordances for a given object. Although HandProxy is able to infer expected gestures from
high-level commands to some extent, it could be further improved by proactively showing possible interactions.
For example, P3 suggested showing a list of possible next steps after each interaction, such as options like “throw,”
“squeeze,” or “drop” after an apple is grabbed. This could not only help users discover additional affordances but
also accelerate workflows by suggesting the most relevant next steps based on the interaction history.

7.4 Supporting Bimanual Interactions
Bimanual interactions offer greater possibilities than unimanual (i.e., one-handed) interactions. Immersive apps
such as Paper Birds2 and Cubism3 utilize both hands either collaboratively (e.g., performing a joint action) or
separately (e.g., one hand for object manipulation, the other for view control). While we demonstrated the
feasibility of speech-controlled one-handed interactions, the system could be extended to support bimanual
interactions — either controlling both hands or a single proxy hand collaborating with the user’s real hand.

Future work could expand the design space for bimanual interactions along two key dimensions: (i) the type of
bimanual interactions, and (ii) the level of proxy controls. For interaction types, Yamagami et al. [86] categorized
bimanual interactions into symmetric in-phase (e.g., jump-roping), symmetric out-of-phase (e.g., climb a ladder),
asymmetric coordinated (e.g., swing a golf club), and asymmetric uncoordinated (e.g., use two swords at the
same time). Regarding the level of proxy controls, the system could be designed to perform bimanual interactions
directly through two proxy hands, or employ one proxy hand that monitors, interprets, and collaborates with the
user’s one-handed input. This expanded design space could better support bimanual interactions.

7.5 Limitation on Applicable Use Cases
While the proposed approach is designed to generalize across a wide range of interaction scenarios, it may
not always offer substantial advantages over alternative methods. For more direct and less hand-dependent
interactions – such as basic system operations (e.g., power on/off) or standard UI controls (e.g., closing windows)
– a traditional speech interface with direct command mapping may be more effective. Interactions requiring high
precision or complexity, such as fine-grained rotations in training or simulation-based XR applications, may pose
challenges when relying solely on the proposed speech interface. Furthermore, although our approach leverages
commonly used gestures across various immersive applications, the current implementation does not readily
accommodate applications that heavily depend on customized, non-standard hand gestures. For example, the
spell-casting game Drakheir Hands of Wizard4 requires specialized gesture inputs that are not easily replicated
within the existing system. These observations suggest that further enhancements are needed to support a
broader range of use cases, particularly those involving diverse gesture types, varying levels of precision, and
additional control requirements.
As an initial exploration of the proxied interaction paradigm for speech interfaces, HandProxy shows the

potential of using virtual hands to broaden interaction possibilities. Future work could address current limitations
through the integration of multimodal input strategies that adaptively optimize interaction based on task type and
complexity. Additional improvements might include support for runtime gesture recording to enable customizable
gesture macros, as well as integration with system-level APIs to facilitate cross-application control.

2https://www.3dar.com/p/paper-birds
3https://www.cubism-vr.com/
4https://www.meta.com/experiences/drakheir-hands-of-wizard

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 3, Article 107. Publication date: September 2025.

https://www.3dar.com/p/paper-birds
https://www.cubism-vr.com/
https://www.meta.com/experiences/drakheir-hands-of-wizard

107:24 • Chen Liang, Yuxuan Liu, Martez Mott, and Anhong Guo

7.6 Towards an Accessible Interface for Hand Interactions
A key motivation of this work is to find an expressive, flexible alternative to hand interactions in cases of
situational impairments, ability mismatches, or user’s varied preferences. While this work demonstrated how
speech interfaces can be enhanced to achieve this goal, it brings up a broader question: can we define a unified
control interface for possible hand interactions in the virtual environment — just like defining an API for 2D
cursor controls, so that the interactions can be mapped to a broader range of input modality setups, potentially
accommodating a wide range of user’s abilities and preferences?

To achieve this, it is important to create a comprehensive, well-defined set of vocabularies for hand interactions
in the virtual environment. Then, the direct mapping between the hand input and an arbitrary input modality
could be simplified to the mapping to this shared vocabulary. This approach could enable flexible and extensible
mapping of hand input to other input setups, including multimodal configurations, that could be used to provide
a more accessible way of interacting with the virtual environment.

8 Conclusion
We presented HandProxy, a system that enables users to control a virtual proxy hand using natural speech
commands, allowing it to perform various hand interactions on the user’s behalf. To achieve this, we defined a
set of hand control primitives and demonstrated how different hand interactions can be composed by combining
these primitives. Building on this structure, we implemented HandProxy as a real-time system that supports the
continuous streaming and execution of user commands with varying levels of granularity. Through a user study
with 20 participants, we demonstrated that HandProxy effectively enables users to complete a wide range of tasks
typically designed for direct hand interactions, and showed that HandProxy is able to interpret diverse command
variations. Additionally, we explored user strategies, preferences, and expectations regarding speech-driven hand
interactions. Finally, we reflected on key findings from the study and discussed their implications for future
developments, including resolving ambiguity in user commands, supporting varying levels of interaction control,
enhancing system transparency and gesture discoverability, supporting bimanual interactions, and directions
towards an accessible interface in virtual environment. This work demonstrates the potential of speech interfaces,
augmented by interaction proxies, to expand their capabilities and facilitate more expressive interactions. Our
findings highlight new possibilities for initiating expressive interactions through speech interfaces and point to
future directions for enhancing usability, adaptability, and intelligent interaction proxies in virtual environments.

A Example Gesture Metadata File
{

"name": "cut",
"data_format": "unified",
"data_source": "leap_motion",
"num_hands": 1,
"right_hand_data_file": "cut.txt",
"left_hand_data_file": null,
"is_hold_at_peak": false,
"is_static": false,
"interacting_frame": 81,
"interacting_joint": ["pinky_mcp"],
"segments": [

{
"name": "preparation",
"start_frame": 0,
"end_frame": 58

},

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 3, Article 107. Publication date: September 2025.

HandProxy: Expanding the Affordances of Speech Interfaces in Immersive Environments with a Virtual Proxy Hand • 107:25

{
"name": "stroke",
"start_frame": 58,
"end_frame": 123

},
{

"name": "retraction",
"start_frame": 123,
"end_frame": 200

}
]

}

References
[1] 2024. Browse Amazing Hand Tracking Apps VR Games on Meta Quest | Meta Store. https://www.meta.com/experiences/section/

344493996865090/
[2] 2024. Control Apple Vision Pro by making sounds. https://support.apple.com/guide/apple-vision-pro/perform-actions-with-sounds-

tan319fb0f99/visionos
[3] 2024. Getting started with Hand and Body Tracking on Meta Quest headsets. https://www.meta.com/help/quest/articles/headsets-and-

accessories/controllers-and-hand-tracking/hand-tracking/
[4] 2024. HoloLens 2 gestures for authoring and navigating in Dynamics 365 Guides - Dynamics 365 Mixed Reality. https://learn.microsoft.

com/en-us/dynamics365/mixed-reality/guides/authoring-gestures-hl2
[5] 2024. Use and manage Meta AI assistant on Meta Quest. https://www.meta.com/help/quest/articles/in-vr-experiences/oculus-

features/use-manage-meta-ai/
[6] 2024. Use gestures with Apple Vision Pro. https://support.apple.com/en-us/117741
[7] 2024. Use Voice Control to interact with Apple Vision Pro. https://support.apple.com/guide/apple-vision-pro/perform-actions-with-

your-voice-tan14d179ad1/visionos
[8] 2024. Voice input. https://learn.microsoft.com/en-us/windows/mixed-reality/design/voice-input
[9] Setareh Aghel Manesh, Tianyi Zhang, Yuki Onishi, Kotaro Hara, Scott Bateman, Jiannan Li, and Anthony Tang. 2024. How people

prompt generative AI to create interactive VR scenes. In Designing Interactive Systems Conference. ACM, New York, NY, USA.
[10] A.M.R. Agur, M.J. Lee, and J.C.B. Grant. 1999. Grant’s Atlas of Anatomy. Lippincott Williams & Wilkins. https://books.google.com/

books?id=8RlqAAAAMAAJ
[11] Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea Finn, Chuyuan Fu, Keerthana

Gopalakrishnan, Karol Hausman, Alex Herzog, Daniel Ho, Jasmine Hsu, Julian Ibarz, Brian Ichter, Alex Irpan, Eric Jang, Rosario Jauregui
Ruano, Kyle Jeffrey, Sally Jesmonth, Nikhil J Joshi, Ryan Julian, Dmitry Kalashnikov, Yuheng Kuang, Kuang-Huei Lee, Sergey Levine, Yao
Lu, Linda Luu, Carolina Parada, Peter Pastor, Jornell Quiambao, Kanishka Rao, Jarek Rettinghouse, Diego Reyes, Pierre Sermanet, Nicolas
Sievers, Clayton Tan, Alexander Toshev, Vincent Vanhoucke, Fei Xia, Ted Xiao, Peng Xu, Sichun Xu, Mengyuan Yan, and Andy Zeng.
2022. Do As I Can, Not As I Say: Grounding Language in Robotic Affordances. arXiv:2204.01691 [cs.RO] https://arxiv.org/abs/2204.01691

[12] Apple. 2024. Use Voice Control commands to interact with iPhone. https://support.apple.com/guide/iphone/use-voice-control-
iph2c21a3c88/ios

[13] Apple. 2024. Use Voice Control on your Mac. https://support.apple.com/en-us/102225
[14] Rahul Arora, Rubaiat Habib Kazi, Danny M. Kaufman, Wilmot Li, and Karan Singh. 2019. MagicalHands: Mid-Air Hand Gestures for

Animating in VR. In Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology (New Orleans, LA, USA)
(UIST ’19). Association for Computing Machinery, New York, NY, USA, 463–477. https://doi.org/10.1145/3332165.3347942

[15] Farhan Aslam and Richard Zhao. 2024. Voice-Augmented Virtual Reality Interface for Serious Games. In 2024 IEEE Conference on Games
(CoG). 1–8. https://doi.org/10.1109/CoG60054.2024.10645616

[16] Huidong Bai, Gun A. Lee, Mukundan Ramakrishnan, and Mark Billinghurst. 2014. 3D gesture interaction for handheld augmented
reality. In SIGGRAPH Asia 2014 Mobile Graphics and Interactive Applications (Shenzhen, China) (SA ’14). Association for Computing
Machinery, New York, NY, USA, Article 7, 6 pages. https://doi.org/10.1145/2669062.2669073

[17] Mark Billinghurst, Hirokazu Kato, and Ivan Poupyrev. 2001. The MagicBook: a transitional AR interface. Computers & Graphics 25, 5
(2001), 745–753. https://doi.org/10.1016/S0097-8493(01)00117-0 Mixed realities - beyond conventions.

[18] Richard A. Bolt. 1980. “Put-that-there”: Voice and gesture at the graphics interface. In Proceedings of the 7th Annual Conference on
Computer Graphics and Interactive Techniques (Seattle, Washington, USA) (SIGGRAPH ’80). Association for Computing Machinery, New
York, NY, USA, 262–270. https://doi.org/10.1145/800250.807503

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 3, Article 107. Publication date: September 2025.

https://www.meta.com/experiences/section/344493996865090/
https://www.meta.com/experiences/section/344493996865090/
https://support.apple.com/guide/apple-vision-pro/perform-actions-with-sounds-tan319fb0f99/visionos
https://support.apple.com/guide/apple-vision-pro/perform-actions-with-sounds-tan319fb0f99/visionos
https://www.meta.com/help/quest/articles/headsets-and-accessories/controllers-and-hand-tracking/hand-tracking/
https://www.meta.com/help/quest/articles/headsets-and-accessories/controllers-and-hand-tracking/hand-tracking/
https://learn.microsoft.com/en-us/dynamics365/mixed-reality/guides/authoring-gestures-hl2
https://learn.microsoft.com/en-us/dynamics365/mixed-reality/guides/authoring-gestures-hl2
https://www.meta.com/help/quest/articles/in-vr-experiences/oculus-features/use-manage-meta-ai/
https://www.meta.com/help/quest/articles/in-vr-experiences/oculus-features/use-manage-meta-ai/
https://support.apple.com/en-us/117741
https://support.apple.com/guide/apple-vision-pro/perform-actions-with-your-voice-tan14d179ad1/visionos
https://support.apple.com/guide/apple-vision-pro/perform-actions-with-your-voice-tan14d179ad1/visionos
https://learn.microsoft.com/en-us/windows/mixed-reality/design/voice-input
https://books.google.com/books?id=8RlqAAAAMAAJ
https://books.google.com/books?id=8RlqAAAAMAAJ
https://arxiv.org/abs/2204.01691
https://arxiv.org/abs/2204.01691
https://support.apple.com/guide/iphone/use-voice-control-iph2c21a3c88/ios
https://support.apple.com/guide/iphone/use-voice-control-iph2c21a3c88/ios
https://support.apple.com/en-us/102225
https://doi.org/10.1145/3332165.3347942
https://doi.org/10.1109/CoG60054.2024.10645616
https://doi.org/10.1145/2669062.2669073
https://doi.org/10.1016/S0097-8493(01)00117-0
https://doi.org/10.1145/800250.807503

107:26 • Chen Liang, Yuxuan Liu, Martez Mott, and Anhong Guo

[19] Virginia Braun and Victoria Clarke. 2012. Thematic analysis. In APA handbook of research methods in psychology, Vol 2: Research designs:
Quantitative, qualitative, neuropsychological, and biological. American Psychological Association, Washington, 57–71.

[20] John Brooke. 1996. SUS-A quick and dirty usability scale (in “Usability Evaluation in Industry”, PW Jordan, B Thomas, I McLelland, BA
Weerdmeester (eds)). 194 (1996), 189–194.

[21] Micael Carreira, Karine Lan Ting, Petra Csobanka, and Daniel Gonçalves. 2017. Evaluation of in-air hand gestures interaction for older
people. Univers. Access Inf. Soc. 16, 3 (aug 2017), 561–580. https://doi.org/10.1007/s10209-016-0483-y

[22] Junuk Cha, Jihyeon Kim, Jae Shin Yoon, and Seungryul Baek. 2024. Text2HOI: Text-guided 3D Motion Generation for Hand-Object
Interaction. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 1577–1585.

[23] Neil Chulpongsatorn, Wesley Willett, and Ryo Suzuki. 2023. HoloTouch: Interacting with Mixed Reality Visualizations Through
Smartphone Proxies. In Extended Abstracts of the 2023 CHI Conference on Human Factors in Computing Systems (Hamburg, Germany)
(CHI EA ’23). Association for Computing Machinery, New York, NY, USA, Article 156, 8 pages. https://doi.org/10.1145/3544549.3585738

[24] Andrea Coppari, Silvia Proia, Andrea Ruo, Filippo Favali, Lorenzo Sabattini, Cristian Secchi, Valeria Villani, Marco Piazzola, and
Luca Capra. 2025. A Large Language Model-Based Motion Planning for Human-Robot Interaction: An Experimental Case Study. In
Human-Friendly Robotics 2024, Antonio Paolillo, Alessandro Giusti, and Gabriele Abbate (Eds.). Springer Nature Switzerland, Cham,
99–113.

[25] Fernanda De La Torre, Cathy Mengying Fang, Han Huang, Andrzej Banburski-Fahey, Judith Amores Fernandez, and Jaron Lanier. 2024.
LLMR: Real-time prompting of interactive worlds using large language models. In Proceedings of the CHI Conference on Human Factors in
Computing Systems. ACM, New York, NY, USA.

[26] William Delamare, Chaklam Silpasuwanchai, Sayan Sarcar, Toshiaki Shiraki, and Xiangshi Ren. 2019. On Gesture Combination: An
Exploration of a Solution to Augment Gesture Interaction. In Proceedings of the 2019 ACM International Conference on Interactive
Surfaces and Spaces (Daejeon, Republic of Korea) (ISS ’19). Association for Computing Machinery, New York, NY, USA, 135–146.
https://doi.org/10.1145/3343055.3359706

[27] Mustafa Doga Dogan, Eric J Gonzalez, Karan Ahuja, Ruofei Du, Andrea Colaço, Johnny Lee, Mar Gonzalez-Franco, and David Kim.
2024. Augmented Object Intelligence with XR-Objects. In Proceedings of the 37th Annual ACM Symposium on User Interface Software
and Technology (Pittsburgh, PA, USA) (UIST ’24). Association for Computing Machinery, New York, NY, USA, Article 19, 15 pages.
https://doi.org/10.1145/3654777.3676379

[28] Cathy Mengying Fang, Krzysztof Zieliński, Pattie Maes, Joe Paradiso, Bruce Blumberg, and Mikkel Baun Kjærgaard. 2024. Enabling
Waypoint Generation for Collaborative Robots using LLMs and Mixed Reality. arXiv:2403.09308 [cs.HC] https://arxiv.org/abs/2403.09308

[29] George W. Furnas, Thomas K. Landauer, Louis M. Gomez, and Susan T. Dumais. 1987. The vocabulary problem in human-system
communication. Commun. ACM 30, 11 (1987), 964–971.

[30] Guillermo Garcia-Hernando, Shanxin Yuan, Seungryul Baek, and Tae-Kyun Kim. 2018. First-Person Hand Action Benchmark with
RGB-D Videos and 3D Hand Pose Annotations. In Proceedings of Computer Vision and Pattern Recognition (CVPR).

[31] Yalda Ghasemi and Heejin Jeong. 2022. Using Gaze-based Interaction to Alleviate Situational Mobility Impairment in Extended Reality.
Proceedings of the Human Factors and Ergonomics Society Annual Meeting 66, 1 (2022), 435–439. https://doi.org/10.1177/1071181322661224
arXiv:https://doi.org/10.1177/1071181322661224

[32] Google. 2024. Principles for improving app accessibility | App quality. https://developer.android.com/guide/topics/ui/accessibility/
principles#label-elements

[33] Google. 2024. Speech-to-Text request construction | Cloud Speech-to-text Documentation | Google Cloud. https://cloud.google.com/
speech-to-text/docs/speech-to-text-requests

[34] Devamardeep Hayatpur, Seongkook Heo, Haijun Xia, Wolfgang Stuerzlinger, and Daniel Wigdor. 2019. Plane, ray, and point: Enabling
precise spatial manipulations with shape constraints. In Proceedings of the 32nd Annual ACM Symposium on User Interface Software and
Technology. ACM, New York, NY, USA.

[35] Daniel Hepperle, Yannick Weiß, Andreas Siess, and Matthias Wölfel. 2019. 2D, 3D or speech? A case study on which user interface is
preferable for what kind of object interaction in immersive virtual reality. Comput. Graph. 82 (Aug. 2019), 321–331.

[36] Anuruddha Hettiarachchi and Daniel Wigdor. 2016. Annexing Reality: Enabling Opportunistic Use of Everyday Objects as Tangible
Proxies in Augmented Reality. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems (San Jose, California,
USA) (CHI ’16). Association for Computing Machinery, New York, NY, USA, 1957–1967. https://doi.org/10.1145/2858036.2858134

[37] Juan David Hincapié-Ramos, Xiang Guo, Paymahn Moghadasian, and Pourang Irani. 2014. Consumed endurance: a metric to quantify
arm fatigue of mid-air interactions. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (Toronto, Ontario,
Canada) (CHI ’14). Association for Computing Machinery, New York, NY, USA, 1063–1072. https://doi.org/10.1145/2556288.2557130

[38] Jan Hombeck, Henrik Voigt, Timo Heggemann, Rabi R. Datta, and Kai Lawonn. 2023. Tell Me Where To Go: Voice-Controlled
Hands-Free Locomotion for Virtual Reality Systems. In 2023 IEEE Conference Virtual Reality and 3D User Interfaces (VR). 123–134.
https://doi.org/10.1109/VR55154.2023.00028

[39] Masoumehsadat Hosseini, Tjado Ihmels, Ziqian Chen, Marion Koelle, Heiko Müller, and Susanne Boll. 2023. Towards a Consensus
Gesture Set: A Survey of Mid-Air Gestures in HCI for Maximized Agreement Across Domains. In Proceedings of the 2023 CHI Conference

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 3, Article 107. Publication date: September 2025.

https://doi.org/10.1007/s10209-016-0483-y
https://doi.org/10.1145/3544549.3585738
https://doi.org/10.1145/3343055.3359706
https://doi.org/10.1145/3654777.3676379
https://arxiv.org/abs/2403.09308
https://arxiv.org/abs/2403.09308
https://doi.org/10.1177/1071181322661224
https://arxiv.org/abs/https://doi.org/10.1177/1071181322661224
https://developer.android.com/guide/topics/ui/accessibility/principles#label-elements
https://developer.android.com/guide/topics/ui/accessibility/principles#label-elements
https://cloud.google.com/speech-to-text/docs/speech-to-text-requests
https://cloud.google.com/speech-to-text/docs/speech-to-text-requests
https://doi.org/10.1145/2858036.2858134
https://doi.org/10.1145/2556288.2557130
https://doi.org/10.1109/VR55154.2023.00028

HandProxy: Expanding the Affordances of Speech Interfaces in Immersive Environments with a Virtual Proxy Hand • 107:27

on Human Factors in Computing Systems (Hamburg, Germany) (CHI ’23). Association for Computing Machinery, New York, NY, USA,
Article 311, 24 pages. https://doi.org/10.1145/3544548.3581420

[40] Brandi House, Jonathan Malkin, and Jeff Bilmes. 2009. The VoiceBot: a voice controlled robot arm. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (Boston, MA, USA) (CHI ’09). Association for Computing Machinery, New York, NY, USA,
183–192. https://doi.org/10.1145/1518701.1518731

[41] Takeo Igarashi and John F. Hughes. 2001. Voice as sound: using non-verbal voice input for interactive control. In Proceedings of the 14th
Annual ACM Symposium on User Interface Software and Technology (Orlando, Florida) (UIST ’01). Association for Computing Machinery,
New York, NY, USA, 155–156. https://doi.org/10.1145/502348.502372

[42] Rahul Jain, Jingyu Shi, Runlin Duan, Zhengzhe Zhu, Xun Qian, and Karthik Ramani. 2023. Ubi-TOUCH: Ubiquitous Tangible Object
Utilization through Consistent Hand-object interaction in Augmented Reality. In Proceedings of the 36th Annual ACM Symposium on
User Interface Software and Technology (San Francisco, CA, USA) (UIST ’23). Association for Computing Machinery, New York, NY, USA,
Article 12, 18 pages. https://doi.org/10.1145/3586183.3606793

[43] Sujin Jang, Wolfgang Stuerzlinger, Satyajit Ambike, and Karthik Ramani. 2017. Modeling Cumulative Arm Fatigue in Mid-Air Interaction
based on Perceived Exertion and Kinetics of Arm Motion. In Proceedings of the 2017 CHI Conference on Human Factors in Computing
Systems (Denver, Colorado, USA) (CHI ’17). Association for Computing Machinery, New York, NY, USA, 3328–3339. https://doi.org/10.
1145/3025453.3025523

[44] Yu Jiang, Zhipeng Li, Mufei He, David Lindlbauer, and Yukang Yan. 2023. HandAvatar: Embodying Non-Humanoid Virtual Avatars
through Hands. In Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems (Hamburg, Germany) (CHI ’23).
Association for Computing Machinery, New York, NY, USA, Article 309, 17 pages. https://doi.org/10.1145/3544548.3581027

[45] Maria Karam and m.c Schraefel. 2005. A Taxonomy of Gestures in Human Computer Interactions. (01 2005).
[46] Mohamed Kari and Christian Holz. 2023. HandyCast: Phone-based Bimanual Input for Virtual Reality in Mobile and Space-Constrained

Settings via Pose-and-Touch Transfer. In Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems (Hamburg,
Germany) (CHI ’23). Association for Computing Machinery, New York, NY, USA, Article 528, 15 pages. https://doi.org/10.1145/3544548.
3580677

[47] Toby Jia-Jun Li, Amos Azaria, and Brad A. Myers. 2017. SUGILITE: Creating Multimodal Smartphone Automation by Demonstration.
In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems (Denver, Colorado, USA) (CHI ’17). Association for
Computing Machinery, New York, NY, USA, 6038–6049. https://doi.org/10.1145/3025453.3025483

[48] Chen Liang, Yasha Iravantchi, Thomas Krolikowski, Ruijie Geng, Alanson P. Sample, and Anhong Guo. 2023. BrushLens: Hardware
Interaction Proxies for Accessible Touchscreen Interface Actuation. In Proceedings of the 36th Annual ACM Symposium on User Interface
Software and Technology (San Francisco, CA, USA) (UIST ’23). Association for Computing Machinery, New York, NY, USA, Article 36,
17 pages. https://doi.org/10.1145/3586183.3606730

[49] Frieder Loch. 2012. Hierarchical gestures: ggestural shortcuts for touchscreen devices. http://essay.utwente.nl/61931/
[50] Tao Lu, Hongxiao Zheng, Tianying Zhang, Xuhai “Orson” Xu, and Anhong Guo. 2024. InteractOut: Leveraging Interaction Proxies

as Input Manipulation Strategies for Reducing Smartphone Overuse. In Proceedings of the 2024 CHI Conference on Human Factors in
Computing Systems (Honolulu, HI, USA) (CHI ’24). Association for Computing Machinery, New York, NY, USA, Article 245, 19 pages.
https://doi.org/10.1145/3613904.3642317

[51] Scott Mcglashan and Tomas Axling. 1996. A Speech Interface to Virtual Environments. (11 1996).
[52] David McNeill. 1992. Hand and mind. Advances in Visual Semiotics 351 (1992).
[53] Pedro Monteiro, Guilherme Goncalves, Hugo Coelho, Miguel Melo, and Maximino Bessa. 2021. Hands-free interaction in immersive

virtual reality: A systematic review. IEEE Trans. Vis. Comput. Graph. 27, 5 (May 2021), 2702–2713.
[54] Martez Mott, John Tang, Shaun Kane, Edward Cutrell, and Meredith Ringel Morris. 2020. “I just went into it assuming that I wouldn’t be

able to have the full experience”: Understanding the Accessibility of Virtual Reality for People with Limited Mobility. In Proceedings of
the 22nd International ACM SIGACCESS Conference on Computers and Accessibility (Virtual Event, Greece) (ASSETS ’20). Association for
Computing Machinery, New York, NY, USA, Article 43, 13 pages. https://doi.org/10.1145/3373625.3416998

[55] Mozilla. 2024. Introduction to the DOM. https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction
[56] Christine Murad, Heloisa Candello, and Cosmin Munteanu. 2023. What’s The Talk on VUI Guidelines? A Meta-Analysis of Guidelines

for Voice User Interface Design. In Proceedings of the 5th International Conference on Conversational User Interfaces (CUI ’23). Association
for Computing Machinery, New York, NY, USA.

[57] Robin R Murphy. 2019. Introduction to AI robotics. MIT press.
[58] OpenAI. 2024. Models - OpenAI API. https://platform.openai.com/docs/models#gpt-4o
[59] Akhil Padmanabha, Jessie Yuan, Janavi Gupta, Zulekha Karachiwalla, Carmel Majidi, Henny Admoni, and Zackory Erickson. 2024.

VoicePilot: Harnessing LLMs as Speech Interfaces for Physically Assistive Robots. In Proceedings of the 37th Annual ACM Symposium on
User Interface Software and Technology. ACM, New York, NY, USA, 1–18.

[60] Siyou Pei, Alexander Chen, Jaewook Lee, and Yang Zhang. 2022. Hand Interfaces: Using Hands to Imitate Objects in AR/VR for
Expressive Interactions. In Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems (New Orleans, LA, USA) (CHI

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 3, Article 107. Publication date: September 2025.

https://doi.org/10.1145/3544548.3581420
https://doi.org/10.1145/1518701.1518731
https://doi.org/10.1145/502348.502372
https://doi.org/10.1145/3586183.3606793
https://doi.org/10.1145/3025453.3025523
https://doi.org/10.1145/3025453.3025523
https://doi.org/10.1145/3544548.3581027
https://doi.org/10.1145/3544548.3580677
https://doi.org/10.1145/3544548.3580677
https://doi.org/10.1145/3025453.3025483
https://doi.org/10.1145/3586183.3606730
http://essay.utwente.nl/61931/
https://doi.org/10.1145/3613904.3642317
https://doi.org/10.1145/3373625.3416998
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model/Introduction
https://platform.openai.com/docs/models#gpt-4o

107:28 • Chen Liang, Yuxuan Liu, Martez Mott, and Anhong Guo

’22). Association for Computing Machinery, New York, NY, USA, Article 429, 16 pages. https://doi.org/10.1145/3491102.3501898
[61] Tran Pham, Jo Vermeulen, Anthony Tang, and Lindsay MacDonald Vermeulen. 2018. Scale Impacts Elicited Gestures for Manipulating

Holograms: Implications for AR Gesture Design. In Proceedings of the 2018 Designing Interactive Systems Conference (Hong Kong, China)
(DIS ’18). Association for Computing Machinery, New York, NY, USA, 227–240. https://doi.org/10.1145/3196709.3196719

[62] Thammathip Piumsomboon, David Altimira, Hyungon Kim, Adrian Clark, Gun Lee, and Mark Billinghurst. 2014. Grasp-Shell vs
gesture-speech: A comparison of direct and indirect natural interaction techniques in augmented reality. In 2014 IEEE International
Symposium on Mixed and Augmented Reality (ISMAR). 73–82. https://doi.org/10.1109/ISMAR.2014.6948411

[63] Thammathip Piumsomboon, Adrian Clark, Mark Billinghurst, and Andy Cockburn. 2013. User-defined gestures for augmented reality. In
CHI ’13 Extended Abstracts on Human Factors in Computing Systems (Paris, France) (CHI EA ’13). Association for Computing Machinery,
New York, NY, USA, 955–960. https://doi.org/10.1145/2468356.2468527

[64] Ivan Poupyrev, Mark Billinghurst, Suzanne Weghorst, and Tadao Ichikawa. 1996. The go-go interaction technique: non-linear mapping
for direct manipulation in VR. In Proceedings of the 9th Annual ACM Symposium on User Interface Software and Technology (Seattle,
Washington, USA) (UIST ’96). Association for Computing Machinery, New York, NY, USA, 79–80. https://doi.org/10.1145/237091.237102

[65] Ivan Poupyrev and Tadao Ichikawa. 1999. Manipulating objects in virtual worlds: Categorization and empirical evaluation of interaction
techniques. Journal of Visual Languages & Computing 10, 1 (1999), 19–35.

[66] Jing Qian, Jiaju Ma, Xiangyu Li, Benjamin Attal, Haoming Lai, James Tompkin, John F. Hughes, and Jeff Huang. 2019. Portal-ble: Intuitive
Free-hand Manipulation in Unbounded Smartphone-based Augmented Reality. In Proceedings of the 32nd Annual ACM Symposium on
User Interface Software and Technology (New Orleans, LA, USA) (UIST ’19). Association for Computing Machinery, New York, NY, USA,
133–145. https://doi.org/10.1145/3332165.3347904

[67] Yanayir Rifai, Ahmad Ataka, Agus Bejo, and Yusuf Kurnia Badriawan. 2024. Upper Limb Rehabilitation Robot Control based on
Large Language Model. In 2024 International Conference on Computer, Control, Informatics and its Applications (IC3INA). 422–427.
https://doi.org/10.1109/IC3INA64086.2024.10732179

[68] Jonas Schjerlund, Kasper Hornbæk, and Joanna Bergström. 2021. Ninja Hands: Using Many Hands to Improve Target Selection in VR. In
Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems (Yokohama, Japan) (CHI ’21). Association for Computing
Machinery, New York, NY, USA, Article 130, 14 pages. https://doi.org/10.1145/3411764.3445759

[69] Rajeev Sharma, Thomas S. Huang, and Vladimir I. Pavlovi’c. 1996. A Multimodal framework for Interacting with Virtual Environments.
Springer US, Boston, MA, 53–71. https://doi.org/10.1007/978-1-4613-1447-9_5

[70] Rajinder S. Sodhi, Brett R. Jones, David Forsyth, Brian P. Bailey, and Giuliano Maciocci. 2013. BeThere: 3D mobile collaboration with
spatial input. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (Paris, France) (CHI ’13). Association for
Computing Machinery, New York, NY, USA, 179–188. https://doi.org/10.1145/2470654.2470679

[71] Misha Sra, Xuhai Xu, and Pattie Maes. 2018. BreathVR: Leveraging Breathing as a Directly Controlled Interface for Virtual Reality
Games. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (Montreal QC, Canada) (CHI ’18). Association
for Computing Machinery, New York, NY, USA, 1–12. https://doi.org/10.1145/3173574.3173914

[72] Péter Telkes, Alexandre Angleraud, and Roel Pieters. 2024. Instructing Hierarchical Tasks to Robots by Verbal Commands. In 2024
IEEE/SICE International Symposium on System Integration (SII). 1139–1145. https://doi.org/10.1109/SII58957.2024.10417491

[73] Jingze Tian, Yingna Wang, Keye Yu, Liyi Xu, Junan Xie, Franklin Mingzhe Li, Yafeng Niu, and Mingming Fan. 2024. Designing Upper-Body
Gesture Interaction with and for People with Spinal Muscular Atrophy in VR. In Proceedings of the CHI Conference on Human Factors in
Computing Systems (CHI ’24, Article 60). Association for Computing Machinery, New York, NY, USA, 1–19.

[74] Wen-Jie Tseng, Samuel Huron, Eric Lecolinet, and Jan Gugenheimer. 2023. FingerMapper: Mapping Finger Motions onto Virtual Arms
to Enable Safe Virtual Reality Interaction in Confined Spaces. In Proceedings of the 2023 CHI Conference on Human Factors in Computing
Systems (CHI ’23, Article 874). Association for Computing Machinery, New York, NY, USA, 1–14.

[75] Ying-Chao Tung, Chun-Yen Hsu, Han-Yu Wang, Silvia Chyou, Jhe-Wei Lin, Pei-Jung Wu, Andries Valstar, and Mike Y. Chen. 2015.
User-Defined Game Input for Smart Glasses in Public Space. In Proceedings of the 33rd Annual ACM Conference on Human Factors
in Computing Systems (Seoul, Republic of Korea) (CHI ’15). Association for Computing Machinery, New York, NY, USA, 3327–3336.
https://doi.org/10.1145/2702123.2702214

[76] Sai Vemprala, Rogerio Bonatti, Arthur Bucker, and Ashish Kapoor. 2023. ChatGPT for Robotics: Design Principles and Model Abilities.
arXiv:2306.17582 [cs.AI] https://arxiv.org/abs/2306.17582

[77] Minh Duc Vu, Han Wang, Zhuang Li, Gholamreza Haffari, Zhenchang Xing, and Chunyang Chen. 2023. Voicify Your UI: Towards
Android App Control with Voice Commands. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 7, 1, Article 44 (March 2023),
22 pages. https://doi.org/10.1145/3581998

[78] Uta Wagner, Mathias N. Lystbæk, Pavel Manakhov, Jens Emil Sloth Grønbæk, Ken Pfeuffer, and Hans Gellersen. 2023. A Fitts’ Law
Study of Gaze-Hand Alignment for Selection in 3D User Interfaces. In Proceedings of the 2023 CHI Conference on Human Factors in
Computing Systems (Hamburg, Germany) (CHI ’23). Association for Computing Machinery, New York, NY, USA, Article 252, 15 pages.
https://doi.org/10.1145/3544548.3581423

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 3, Article 107. Publication date: September 2025.

https://doi.org/10.1145/3491102.3501898
https://doi.org/10.1145/3196709.3196719
https://doi.org/10.1109/ISMAR.2014.6948411
https://doi.org/10.1145/2468356.2468527
https://doi.org/10.1145/237091.237102
https://doi.org/10.1145/3332165.3347904
https://doi.org/10.1109/IC3INA64086.2024.10732179
https://doi.org/10.1145/3411764.3445759
https://doi.org/10.1007/978-1-4613-1447-9_5
https://doi.org/10.1145/2470654.2470679
https://doi.org/10.1145/3173574.3173914
https://doi.org/10.1109/SII58957.2024.10417491
https://doi.org/10.1145/2702123.2702214
https://arxiv.org/abs/2306.17582
https://arxiv.org/abs/2306.17582
https://doi.org/10.1145/3581998
https://doi.org/10.1145/3544548.3581423

HandProxy: Expanding the Affordances of Speech Interfaces in Immersive Environments with a Virtual Proxy Hand • 107:29

[79] Xiangzhi Eric Wang, Zackary P T Sin, Ye Jia, Daniel Archer, Wynonna H Y Fong, Qing Li, and Chen Li. 2025. Can you move these over
there? An LLM-based VR Mover for supporting object manipulation. arXiv [cs.HC] (Feb. 2025).

[80] Christian Weichel, Manfred Lau, David Kim, Nicolas Villar, and Hans W. Gellersen. 2014. MixFab: a mixed-reality environment for
personal fabrication. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (Toronto, Ontario, Canada) (CHI
’14). Association for Computing Machinery, New York, NY, USA, 3855–3864. https://doi.org/10.1145/2556288.2557090

[81] Johann Wentzel, Alessandra Luz, Martez E Mott, and Daniel Vogel. 2025. MotionBlocks: Modular Geometric Motion Remapping for More
Accessible Upper Body Movement in Virtual Reality. In Proceedings of the 2025 CHI Conference on Human Factors in Computing Systems
(CHI ’25). Association for Computing Machinery, New York, NY, USA, Article 608, 16 pages. https://doi.org/10.1145/3706598.3713837

[82] Matt Whitlock, Ethan Harnner, Jed R. Brubaker, Shaun Kane, and Danielle Albers Szafir. 2018. Interacting with Distant Objects in
Augmented Reality. In 2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR). 41–48. https://doi.org/10.1109/VR.2018.8446381

[83] Adam S. Williams, Jason Garcia, and Francisco Ortega. 2020. Understanding Multimodal User Gesture and Speech Behavior for Object
Manipulation in Augmented Reality Using Elicitation. IEEE Transactions on Visualization and Computer Graphics 26, 12 (2020), 3479–3489.
https://doi.org/10.1109/TVCG.2020.3023566

[84] Jacob O. Wobbrock. 2019. Situationally-Induced Impairments and Disabilities. In Web accessibility: A foundation for research (2 ed.), Yeliz
JYesilada and Simon Harper (Eds.). Springer, London, England, Chapter 5.

[85] Haijun Xia, Michael Glueck, Michelle Annett, Michael Wang, and Daniel Wigdor. 2022. Iteratively Designing Gesture Vocabularies: A
Survey and Analysis of Best Practices in the HCI Literature. ACM Trans. Comput.-Hum. Interact. 29, 4 (May 2022), 1–54.

[86] Momona Yamagami, Sasa Junuzovic, Mar Gonzalez-Franco, Eyal Ofek, Edward Cutrell, John R. Porter, Andrew D. Wilson, and Martez E.
Mott. 2022. Two-In-One: A Design Space for Mapping Unimanual Input into Bimanual Interactions in VR for Users with Limited
Movement. ACM Trans. Access. Comput. 15, 3, Article 23 (jul 2022), 25 pages. https://doi.org/10.1145/3510463

[87] Momona Yamagami, Claire L Mitchell, Alexandra A Portnova-Fahreeva, Junhan Kong, Jennifer Mankoff, and Jacob O Wobbrock.
2024. Customized Mid-Air Gestures for Accessibility: A $ B Recognizer for Multi-Dimensional Biosignal Gestures. arXiv preprint
arXiv:2409.08402 (2024).

[88] Momona Yamagami, Alexandra A Portnova-Fahreeva, Junhan Kong, Jacob O. Wobbrock, and Jennifer Mankoff. 2023. How Do People
with Limited Movement Personalize Upper-Body Gestures? Considerations for the Design of Personalized and Accessible Gesture
Interfaces. In Proceedings of the 25th International ACM SIGACCESS Conference on Computers and Accessibility (New York, NY, USA)
(ASSETS ’23). Association for Computing Machinery, New York, NY, USA, Article 1, 15 pages. https://doi.org/10.1145/3597638.3608430

[89] Chao-Han Huck Yang, Yile Gu, Yi-Chieh Liu, Shalini Ghosh, Ivan Bulyko, and Andreas Stolcke. 2023. Generative Speech Recognition Error
Correction With Large Language Models and Task-Activating Prompting. In 2023 IEEE Automatic Speech Recognition and Understanding
Workshop (ASRU). 1–8. https://doi.org/10.1109/ASRU57964.2023.10389673

[90] Nima Zargham, Mohamed Lamine Fetni, Laura Spillner, Thomas Muender, and Rainer Malaka. 2024. “I know what you mean”: Context-
aware recognition to enhance speech-based games. In Proceedings of the CHI Conference on Human Factors in Computing Systems. ACM,
New York, NY, USA.

[91] Lei Zhang, Jin Pan, Jacob Gettig, Steve Oney, and Anhong Guo. 2024. VRCopilot: Authoring 3D Layouts with Generative AI Models
in VR. In Proceedings of the 37th Annual ACM Symposium on User Interface Software and Technology (Pittsburgh, PA, USA) (UIST ’24).
Association for Computing Machinery, New York, NY, USA, Article 96, 13 pages. https://doi.org/10.1145/3654777.3676451

[92] Xiaoyi Zhang, Anne Spencer Ross, Anat Caspi, James Fogarty, and Jacob O. Wobbrock. 2017. Interaction Proxies for Runtime Repair and
Enhancement of Mobile Application Accessibility. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems
(Denver, Colorado, USA) (CHI ’17). Association for Computing Machinery, New York, NY, USA, 6024–6037. https://doi.org/10.1145/
3025453.3025846

[93] Xiaoyi Zhang, Tracy Tran, Yuqian Sun, Ian Culhane, Shobhit Jain, James Fogarty, and Jennifer Mankoff. 2018. Interactiles: 3D Printed
Tactile Interfaces to Enhance Mobile Touchscreen Accessibility. In Proceedings of the 20th International ACM SIGACCESS Conference
on Computers and Accessibility (Galway, Ireland) (ASSETS ’18). Association for Computing Machinery, New York, NY, USA, 131–142.
https://doi.org/10.1145/3234695.3236349

[94] Yuchong Zhang, Bastian Orthmann, Michael C. Welle, Jonne Van Haastregt, and Danica Kragic. 2025. LLM-Driven Augmented Reality
Puppeteer: Controller-Free Voice-Commanded Robot Teleoperation. arXiv:2502.09142 [cs.HC] https://arxiv.org/abs/2502.09142

[95] Daniel Zielasko, Sebastian Freitag, Dominik Rausch, Yuen C. Law, Benjamin Weyers, and Torsten W. Kuhlen. 2015. BlowClick: A
Non-Verbal Vocal Input Metaphor for Clicking. In Proceedings of the 3rd ACM Symposium on Spatial User Interaction (Los Angeles,
California, USA) (SUI ’15). Association for Computing Machinery, New York, NY, USA, 20–23. https://doi.org/10.1145/2788940.2788953

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 9, No. 3, Article 107. Publication date: September 2025.

https://doi.org/10.1145/2556288.2557090
https://doi.org/10.1145/3706598.3713837
https://doi.org/10.1109/VR.2018.8446381
https://doi.org/10.1109/TVCG.2020.3023566
https://doi.org/10.1145/3510463
https://doi.org/10.1145/3597638.3608430
https://doi.org/10.1109/ASRU57964.2023.10389673
https://doi.org/10.1145/3654777.3676451
https://doi.org/10.1145/3025453.3025846
https://doi.org/10.1145/3025453.3025846
https://doi.org/10.1145/3234695.3236349
https://arxiv.org/abs/2502.09142
https://arxiv.org/abs/2502.09142
https://doi.org/10.1145/2788940.2788953

	Abstract
	1 Introduction
	2 Related Work
	2.1 Enhancements and Alternatives for Hand Interactions
	2.2 Speech Interfaces in Immersive Environments
	2.3 Interaction Proxies

	3 Primitives of Hand Interaction
	4 HandProxy: A Speech System for Virtual Environment Interaction Using a Proxy Hand
	4.1 Design Elements
	4.2 Speech Understanding
	4.3 Hand Control
	4.4 Visualization and Feedback
	4.5 System Latency
	4.6 Adapting to New Gestures and Environments
	4.7 Design Iterations

	5 User Study
	5.1 Participants
	5.2 Apparatus and Procedure
	5.3 Methodology and Procedure of Data Collection and Analysis

	6 User Study Results
	6.1 RQ1: To what extent can participants complete a wide variety of tasks using HandProxy?
	6.2 RQ2: How effectively can the system interpret the diverse ways in which users issue commands?
	6.3 RQ3: What strategies, preferences, and methods do participants use for specifying intent?
	6.4 RQ4: How do participants experience and perceive HandProxy?
	6.5 RQ5: What other expectations do participants have for the system?

	7 Discussion and Future Work
	7.1 Handling Ambiguity in Interaction Commands
	7.2 Supporting Multiple Levels of Interaction Control
	7.3 Improving Transparency and Gesture Discoverability
	7.4 Supporting Bimanual Interactions
	7.5 Limitation on Applicable Use Cases
	7.6 Towards an Accessible Interface for Hand Interactions

	8 Conclusion
	A Example Gesture Metadata File
	References

